COSETS AND LAGRANGE'S THEOREM

Ms.J.D.Sundari M.Sc., M.Ed., M.Phil., SET Asst. Professor of Mathematics

Left Coset:

Let H be a subgroup of a group G. Let $a \in G$. Then the set $aH=\{ah/h \in H\}$ is called the left Coset of H defined by a in G.

Right Coset:

Let H be a subgroup of a group G. Let $a \in G$. Then the set Ha={ha/h \in H} is called the right Coset of H defined by a in G.

Example:

Consider (Z_{12}, \oplus) . Then H = {0,4,8} is a subgroup of G.The left cosets of H are $O+H = \{0,4,8\} = H$ $1+H = \{1,5,9\}$ $2+H = \{2, 6, 10\}$ $3+H = \{3,7,11\}$ $4+H = \{4,8,0\}$ $5+H = \{5,9,1\}$ We notice that $4+H = \{4, 8, 0\} = H$ and $5+H = \{5,9,1\} = 1+H$ etc

Theorem:

Let H be a subgroups of G. Then (i) any two left cosets of H are either identical or disjoint (ii)Union of all the left cosets of H is G (iii)the number of elements in any left coset aH is the same as the number of elements in H

Proof of the theorem:

(i)Let aH and bH be two left cosets.Suppose
aH and bH are not disjoint.to prove that aH =
bH

Since aH and bH are not disjoint $aH \cap bH \neq \emptyset$

- \therefore there exists an element $c \in aH \cap bH$
- \therefore c \in aH \cap bH and c \in aH \cap bH
- \therefore aH = cH and bH = cH

(by $a \in bH \Leftrightarrow aH = bH$)

∴aH=bH

(ii)let $a \in G$. Then $a = ae \in aH$

- .:. Every element of G belongs to a left cosets of H.
- ... The union of all the left cosets of H in G.

(iii)The map f:H→aH defined by f(h) =ah is clearly bijection.
Hence every left coset has the same number of elements as H.

Theorem:

Let H be a subgroup of G. the number of left cosets of H is the same as the number of right cosets of H

Proof:

Let L and R be denote the set of left and right cosets of H. we define a map f:L \rightarrow R by f(aH) = Ha⁻¹ aH = bH \Rightarrow a⁻¹b \in H \Rightarrow a⁻¹ \in Hb⁻¹ \Rightarrow Ha⁻¹ = Hb⁻¹

∴f is well defined.

 $f(aH) = f(bH) \implies Ha^{-1} = Hb^{-1}$ $\Rightarrow a^{-1} \in Hb^{-1}$ $\Rightarrow a^{-1} = Hb^{-1}$ \Rightarrow a =bh⁻¹ $\Rightarrow a \in bH$ \Rightarrow aH = Hb

∴f is 1-1

For, every right coset Ha has a pre image a⁻¹H.

.f is onto

Hence f is bijection from L to R. Hence the number of left cosets is same as the number of right cosets

Let H be a subgroup of G, and a,b in G.

- 1. aH = bH iff a belongs to bH
- 2. aH and bH are either equal or disjoint
- 3. |aH| = |bH|

LAGRANGE'S THEOREM

If G is finite group and H is a subgroup of G, then

- a) |H| divides |G|.
- b) The number of distinct left (right) cosets of H in G is |G|/|H|

Proof:

Let $H \le G$ with |G| = n, and |H| = k. Write the elements of H in row 1: $e \quad h_2 \quad h_3 \quad \dots \quad h_k$

Choose any a_2 in G not in row 1. Write a_2 H in the second row.

е	h ₂	h ₃	 h _k
a ₂	a_2h_2	$a_2 h_3$	 $a_2 h_k$

Continue in a similar manner... Since G is finite, this process will end

е	h ₂	h ₃	 h _k
a ₂	$a_2 h_2$	$a_2 h_3$	 $a_2 h_k$
a ₃	$a_3 h_2$	$a_3 h_3$	 a ₃ h _k
	:	:	:
a _r	a _r h ₂	a _r h ₃	a _r h _k

Rows are disjoint by (2) Each row has k elements by (3)

е	h ₂	h ₃	 h _k
a ₂	$a_2 h_2$	$a_2 h_3$	 $a_2 h_k$
a ₃	a_3h_2	a ₃ h ₃	 a ₃ h _k
:	:	:	:
a _r	a _r h ₂	a _r h ₃	a _r h _k

Let r be the number of distinct cosets. Clearly $|G| = |H| \cdot r$, and r = |G|/|H|.

е	h ₂	h ₃	 h _k
a ₂	$a_2 h_2$	$a_2 h_3$	 $a_2 h_k$
a ₃	a_3h_2	a ₃ h ₃	 a ₃ h _k
	:	:	:
a _r	a _r h ₂	a _r h ₃	a _r h _k

THANK YOU