
 MRS. D.SELVI

C++(OOPs Concept)

 Procedure-Oriented Language

 Used in C,COBOL,FORTRAN(high level language)
 Emphasis on doing algorithms
 Larger program is divided into smaller program called

functions
 Most of the function share global data
 Data moves openly around the system from function to

function
 Employs top-down approach

Object-Oriented Programming

 C++,Smalltalk , ObjectPascal, Java use these features
 Emphasis on data rather than procedure
 Programs are divided into objects
 Data is hidden and cannot be accessed by external functions
 Objects communicate with each other through function
 New data and functions can be easily added whenever

necessary
 Follows bottom-up approach

What is C++

 C++ is an Enhanced version of c Language which is developed

by Bjarne Stroustrup in 1980 in AT & T’s Bell Lab.
 C++ Inherits many features from C Language and it also Some

More Features and This Makes C++ an OOP Language.
 C++ Provides Reusability of Code for Another user.

http://ecomputernotes.com/cpp/introduction-to-oop/what-is-c

Characteristics of OOPs

 Object based features
 Inheritance
 Dynamic binding

Features of OOPs

 Data encapsulation
 Data hiding and access mechanism
 Automatic initialization and clear up of objects
 Operator overloading

Application of OOPs:

 Real time sytems
 Simulation and modelling
 Object oriented databases
 AI and expert system
 CIM/CAD system
 Neural networking
 Hypertext,Hypermedia

Structure of a C+ + Program

 Programs are a sequence of instructions or statements. These

statements form the structure of a C++ program. C++ program
structure is divided into various sections, namely, headers,
class definition, member functions definitions and main
function.

 C++ provides the flexibility of writing a program with or
without a class and its member functions definitions.

 A simple C++ program (without a class) includes comments,
headers, namespace, main() and input/output statements.

http://ecomputernotes.com/cpp/introduction-to-oop/structure-of-a-cpp

Comments

 Comments are a vital element of a program that is used to
increase the readability of a program and to describe its
functioning. Comments are not executable statements and
hence, do not increase the size of a file.

 Single line command:
 / / An example to demonstrate
 / / single line comment
 Multi line command
 /* An example to demonstrate
 multiline comment */

Input/Output Operator in C++

 The operator used for taking the input is known as

the extraction or get from operator (>>)
 while the operator used for displaying the output is known as

the insertion or put to operator (<<)

http://ecomputernotes.com/cpp/introduction-to-oop/input-output-operator-in-cpp

Cascading of Input/Output Operators

 The cascading of the input and output operators refers to the

consecutive occurrence of input or output operators in a single
statement.

#include<iostream>
using namespace std;
int main ()
{
int a, b;
cin>>a;
cin>>b;
cout<<"The value of a is
cout<<a;
cout<<"The value of b is
cout<<b;
return 0;
}

#include<iostream>
using namespace std;
int main ()
{
int a, b;
cin>>a>>b;
Cout<<"The value of b is : "<<b;
cout<<"The value of a is "<<a;
return 0;
}

 Variables



Definition: "Variables are those quantities whose value can
vary during the execution of the program”

 SYNTAX: data_type variable_name;
 EG:
 int x, y, z;

Namespace

 One of the new features added to this language is
namespace.

 A namespace permits grouping of various entities like classes,
objects, functions and various C++ tokens, etc., under a single
name.

all the modern C++ compilers support
these statements.

old compilers may not support these
statements

#include<iostream>
using namespace std;

#include<iostream.h>

Class

 It is a user-defined data type, which holds its own data
members and member functions, which can be accessed and
used by creating an instance of that class. A class is like a
blueprint for an object.

 A class is defined in C++ using keyword class followed by the
name of class. The body of class is defined inside the curly
brackets and terminated by a semicolon at the end.

https://www.geeksforgeeks.org/c-classes-and-objects/

OBJECT

 An Object is an real time entity with some characteristics and
behaviour.

 An Object is an instance of a Class. When a class is defined, no
memory is allocated but when it is instantiated (i.e. an object
is created) memory is allocated.

 Syntax:
 ClassName ObjectName;

OBJECT:STUDENT

DATA:
 Name
 D.O.B
 Marks
 …………

FUNCTIONS:
 Total
 Average
 Display
 …………

Encapsulation and Abstraction

 Encapsulation is defined as wrapping up of data and
information under a single unit.

 Encapsulation is defined as binding together the data and the
functions that manipulate them.

 Encapsulation also leads to data abstraction or hiding.

https://www.geeksforgeeks.org/encapsulation-in-c/
https://www.geeksforgeeks.org/abstraction-in-c/

 Abstraction means displaying only essential information and
hiding the details.

 Data abstraction refers to providing only essential
information about the data to the outside world, hiding the
background details or implementation.

 Abstraction using Classes: We can implement Abstraction in
C++ using classes. The class helps us to group data members
and member functions using available access specifiers. A
Class can decide which data member will be visible to the
outside world and which is not.

INHERITANCE

 The capability of a class to derive properties and
characteristics from another class is called Inheritance.
Inheritance is one of the most important features of Object-
Oriented Programming.

 Sub Class: The class that inherits properties from another
class is called Sub class or Derived Class.

 Super Class:The class whose properties are inherited by sub
class is called Base Class or Super class.

 Reusability: Inheritance supports the concept of “reusability”,
i.e. when we want to create a new class and there is already a
class that includes some of the code that we want, we can
derive our new class from the existing class. By doing this, we
are reusing the fields and methods of the existing class.

Example: Dog, Cat, Cow can be Derived
Class of Animal Base Class.

POLYMORPHISM

 The word polymorphism means having many forms. In simple
words, we can define polymorphism as the ability of a
message to be displayed in more than one form.

 A person at the same time can have different characteristic.
Like a man at the same time is a father, a husband, an
employee. So the same person posses different behaviour in
different situations. This is called polymorphism.

 An operation may exhibit different behaviours in different
instances. The behaviour depends upon the types of data used
in the operation.

 C++ supports operator overloading and function overloading.
 Operator Overloading: The process of making an operator to

exhibit different behaviours in different instances is known as
operator overloading.

 Function Overloading: Function overloading is using a single
function name to perform different types of tasks.
Polymorphism is extensively used in implementing
inheritance.

Message Passing

 Message Passing: Objects communicate with one another by
sending and receiving information to each other. A message
for an object is a request for execution of a procedure and
therefore will invoke a function in the receiving object that
generates the desired results. Message passing involves
specifying the name of the object, the name of the function
and the information to be sent.

Steps for message passing:

 Create classes that define objects and their behaviour
 Creating objects from class definition
 Establishing communication among objects

Benefits of OOPs

 Eliminate redundant code and extend the use of existing code
using inheritance

 Building secure programs by the principle of data hiding
 Building secure programs from working modules that

communicate with each other. Its saves development time
and leads to higher productivity.

 Mapping objects in the problem domain to those in program
 Easy to partition work in projects based on objects
 Software complexity can be easily managed

 Can be upgraded from smaller to larger systems
 Captures more details of model in implementable form
 Message passing technique makes interface description with

external systems much simpler
 Multiple instance of object can co-exist without interferance

Access Modifiers in C++

 Access modifiers are used to implement an important feature

of Object-Oriented Programming known as Data Hiding.
 There are 3 types of access modifiers available in C++:
 Public
 Private
 Protected

https://practice.geeksforgeeks.org/problems/what-is-data-hiding

 Public: All the class members declared under public will be
available to everyone. The data members and member
functions declared public can be accessed by other classes
too. The public members of a class can be accessed from
anywhere in the program using the direct member access
operator (.) with the object of that class.

#include<iostream>
using namespace std;

// class definition
class Circle
{
 public:
 double radius;

 double compute_area()
 {
 return 3.14*radius*radius;
 }

};

 Private: The class members declared as private can be
accessed only by the functions inside the class. They are not
allowed to be accessed directly by any object or function
outside the class. Only the member functions or the friend
functions are allowed to access the private data members of a
class.

https://www.geeksforgeeks.org/friend-class-function-cpp/
https://www.geeksforgeeks.org/friend-class-function-cpp/

 Protected: Protected access modifier is similar to that of
private access modifiers, the difference is that the class
member declared as Protected are inaccessible outside the
class but they can be accessed by any subclass(derived class)
of that class.

C++ Tokens

 A token is the smallest individual unit of a program that is

meaningful to the compiler. Tokens can be classified as
follows:

 Keywords
 Identifiers
 Constants
 Strings
 Special Symbols
 Operators

Keyword

 Keywords are pre-defined or reserved words in a
programming language. Each keyword is meant to perform a
specific function in a program.

C language supports 32 keywords which are
given below:

auto double int struct
 break else long switch

 case enum register typedef
 char extern return union

 const float short unsigned
continue for signed void

 default goto sizeof volatile
do if static while

While in C++ there are 31 additional
keywords other than C Keywords they are:
 asm bool catch class
 const_cast delete dynamic_cast explicit
 export false friend inline
 mutable namespace new operator
 private protected public reinterpret_cast
 static_cast template this throw
 true try typeid typename
 using virtual wchar_t

Identifiers

 These are user defined names consisting of arbitrarily long
sequence of letters and digits with either a letter or the
underscore(_) as a first character.

 Name cannot start with a digit
 A declared keyword cannot be used as a variable name
 Uppercase and lowercase letters are distict
 They must consist of only letters, digits, or underscore

Constants

 Constants refer to fixed values. They are also called as
literals.

 Their value do not change during the execution of
program

 Syntax:
 const data_type variable_name; (or) const
data_type *variable_name;

Types of Constants:

 Integer constants
 Real or Floating point constants
 Octal & Hexadecimal constants
 Character constants
 String constants

 Primitive Data Types: These data types are built-in or predefined
data types and can be used directly by the user to declare
variables. example: int, char , float, bool etc. Primitive data types
available in C++ are:Integer

 Character
 Boolean
 Floating Point
 Double Floating Point
 Valueless or Void
 Wide Character

 Abstract or User-Defined Data Types: These data types are
defined by user itself. Like, defining a class in C++ or a
structure. C++ provides the following user-defined
datatypes:Class

 Structure
 Union
 Enumeration
 Typedef defined DataType

https://www.geeksforgeeks.org/user-defined-derived-data-types-in-c/

Structures and Classes

 User defined data types such as struct and union in c
 C++ permits to define another user defined data type - class
 Class variables are known as objects

Enumerated Data Types
Attaching names to number

enum
enum shape{circle, square, triangle};
enum colour{red, blue, green, yellow};
enum position{on,off};
new type names

IN C
enums to be ints
 IN C++
Does not permit an int value to be automatically converted to an

enum value
EX:
 colour background = blue;
colour background = 7;
colour backround = (colour) 7;
An enumerated value can be used in place of an int value
int c = red; // color type promoted to int

By default, the enumerators are assigned integer values stating
with 0 for the first enumerator, 1 for the second ,…..

 enum colour{red, blue, green}
 enum colour{red, blue = 7, green = 9}
 enum colour{red = 5, blue, green}

Derived Data Types

 The data-types that are derived from the primitive or built-in
datatypes are referred to as Derived Data Types. These can be
of four types namely:Function

 Array
 Pointer
 Reference

Arrays

Array size is the exact length of the string constant
 ex: char string [3] = “zxc”;
 the size should be one larger than the number of characters in

the string.
Ex : char string [3] = “zxc”;
 char string [4] = “zxc”;

Symbolic constants
Two ways:
 Using the qualifier constant
 Defining a set of integer constants using enum keyword.
In C and C++
 const – constant expression
 const int size = 10; (const size =10;)
 char name [size];
 The named constants are just like variables except that their

values cannot be changed.

Type Compatibility

 sizeof (‘x’) = sizeof (int)

Declaration of variables
int main()
{
 float x; //declaration
 float sum = 0;
 for{int I =1;i<5;i++} // declaration
 {

 }
 float average; //declaration
 {

 }

Reference Variable & Call by reference
New kind of variable – reference
Data –type & reference – name = variable – name
float sum = total;
 void f(int & x) // reference
 {
 X = x+10;
 }
 int main ()
 {
 int m =10;
 f(m); //function call

Operators in C++

operators name Functions

:: Scope resolution operator Same variable name can be used to have different
meanings in different blocks

::* Pointer – to – member declarator To declare a pointer to a member of a class

-> Pointer – to – member operator To access a member

What is Expressions in C++?

 A combination of variables, constants and operators that represents a
computation forms an expression.

 These categories of an expression are discussed here.
 Constant expressions
 Integral expressions
 Float expressions
 Relational or Boolean expressions
 Logical expressions
 Bitwise expressions
 Pointer expressions

http://ecomputernotes.com/cpp/introduction-to-oop/expressions-in-cpp

Constant expressions

 The expressions that comprise only constant values are called
constant expressions.

 20
 ‘a’
 20+9/2.0

Integral expressions

 The expressions that produce an integer value as output after
performing all types of conversions are called integral
expressions.

 For example
 x
 6*x-y
 10 +int (5.0) are integral expressions
 Here, x and y are variables of type into

Float expressions

 The expressions that produce floating-point value as output
after performing all types of conversions are called float
expressions.

 For example
 9.25
 x-y
 9+ float (7) are float expressions
Here, x 'and yare variables of type float.

Relational or Boolean expressions

 The expressions that produce a bool type value, that is, either
true or false are called relational or Boolean expressions.

 For example
 x + y<100
 m + n==a-b
 a>=b + c are relational expressions.

Logical expressions

 The expressions that produce a bool type value after
combining two or more relational expressions are
called logical expressions

 For example,
 x==5 &&m==5
 y>x || m<=n are logical expressions.

Pointer expressions

 The expressions that give address values as output are
called pointer expressions.

 For example
 &x
 ptr
 ptr+1 are pointer expressions.
Here, x is a variable of any type and ptr is a pointer.

Bitwise expressions

 The expressions which manipulate data at bit level are
called bitwise expressions.

 For example
 a >> 4
 b<< 2 are bitwise expressions.

Special assignment expressions

 Chained assignment
 Embedded assignment

Chained assignment

 Chained assignment is an assignment expression in which the
same value is assigned to more than one variable, using a
single statement. For example, consider these statements.

 a = (b=20); or
 a=b=20;
 For example, consider these statements.
 int a=b=30; // illegal
 int a=30, int b=30; //valid

 Embedded assignment

 Embedded assignment is an assignment expression, which is
enclosed within another assignment expression. For example,
consider this statement

 a=20+(b=30); //equivalent to b=30; a=20+30;

Compound Assignment

 Compound Assignment is an assignment expression, which
uses a compound assignment operator that is a combination
of the assignment operator with a binary arithmetic operator.
For example, consider this statement.

 a + =20; //equivalent to a=a+20;
The general form is:
 var1 op=var2; //equivalent to var1=var1 op var2
Where op=binary arithmetic operator

Implicit Conversions

 Implicit conversion, also known as automatic type conversion

refers to the type conversion that is automatically performed
by the compiler.

 For example,
 in expression 5 + 4.25, the compiler converts the int into
float as float is larger than int and then performs the addition.

Typecasting

 Typecasting refers to the type conversion that is performed

explicitly using type cast operator. In C++, typecasting can be
performed by using two different forms which are given here.

 data_type (expression) //expression in
parentheses
 (data_type)expression //data type in parentheses
where,
data_type = data type (also known as cast operator) to
which the expression is to be converted.

 Eg:
 avg=sum/float(i);
New cast operators:
 reinterpret_cast
 dynamic_cast
 static_cast
 const_cast

C++ Operators with Precedence and
Associativity

 Operator precedence determines the grouping of terms in an

expression. The associativity of an operator is a property that
determines how operators of the same precedence are
grouped in the absence of parentheses.

Category

Operator

Associativity

Postfix

() [] -> . ++ - -

Left to right

Unary

 + - ! ~ ++ - - (type)* & sizeof

Right to left

Multiplicative

* / %

Left to right

Additive

+ -

Left to right

Shift

<< >>

Left to right

Relational

< <= > >=

Left to right

Equality

== !=

Left to right

Bitwise AND

&
Left to right

Bitwise XOR

^
Left to right

Bitwise OR

|
Left to right

Logical AND

&&
Left to right

Logical OR

||
Left to right

Conditional

?:

 Right to left

Assignment

 = += -= *= /= %= >>= <<= &= ^= |=

Right to left

Comma

,
Left to right

	 mrs. D.selvi ��
		Procedure-Oriented Language
	Object-Oriented Programming
	What is C++�
	Characteristics of OOPs
	Features of OOPs
	Application of OOPs:
	Structure of a C+ + Program�
	Slide Number 9
	Comments
	Slide Number 11
	Input/Output Operator in C++�
	Cascading of Input/Output Operators�
	Slide Number 14
	 Variables�
	Namespace
	Slide Number 17
	Class
	Slide Number 19
	OBJECT
	Slide Number 21
	Encapsulation and Abstraction
	Slide Number 23
	INHERITANCE
	Slide Number 25
	Example: Dog, Cat, Cow can be Derived Class of Animal Base Class.
	POLYMORPHISM
	Slide Number 28
	Slide Number 29
	Message Passing
	Steps for message passing:
	Benefits of OOPs
	Slide Number 33
	Access Modifiers in C++�
	Slide Number 35
	���������������#include<iostream> �using namespace std; � �// class definition �class Circle �{ � public: � double radius; � � double compute_area() � { � return 3.14*radius*radius; � } � �}; � �// main function �int main() �{ � Circle obj; � � // accessing public datamember outside class � obj.radius = 5.5; � � cout << "Radius is: " << obj.radius << "\n"; � cout << "Area is: " << obj.compute_area(); � return 0; �}
	Slide Number 37
	Slide Number 38
	C++ Tokens�
	Keyword
	C language supports 32 keywords which are given below:�
	While in C++ there are 31 additional keywords other than C Keywords they are:
	Identifiers
	Constants
	Types of Constants:
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Structures and Classes
	Enumerated Data Types
	Slide Number 51
	Slide Number 52
	Derived Data Types
	Arrays
	Symbolic constants
	Type Compatibility
	Declaration of variables
	Reference Variable & Call by reference
	Operators in C++
	What is Expressions in C++?�
	Constant expressions
	Integral expressions
	Float expressions
	Relational or Boolean expressions
	Logical expressions
	Pointer expressions
	Bitwise expressions
	Special assignment expressions
	Chained assignment
	 Embedded assignment
	Compound Assignment
	Implicit Conversions�
	Slide Number 73
	Typecasting�
	Slide Number 75
	C++ Operators with Precedence and Associativity�
	�

