The Phase rule

By Mrs. M. Vimala Joice, Assistant Professor of Chemistry

TERMS & Examples

 ➢ Homogenous Chemical Equilibrium
 N_{2(g)} + 3H_{2(g)} ↔ 2 NH_{3(g)}

 ➢ Heterogonous Chemical Equilibrium
 CaCO_{3(s)} ↔ CaO_(s) + CO_{2(g)}

 ➢ Heterogonous Physical Equilibrium
 Solid → Liquid (Melting)
 Liquid → Vapour (Vaporisation)
 Solid → Vapour (Sublimation)

TERMS & Examples (Contd....)

- **PHASE**, **P**: Physically **distinct** & mechanically separable
- **COMPONENTS**, **C**: **Minimum** number of **chemical** species by means of which the composition each phase can be described
- C = Number of chemical compounds No of chemical and or physical

(material or charge balance) relations existing with them

(i) WATER SYTEM: ice \rightarrow water \rightarrow vapor

P = 1, 2 or 3; C = 1 ; F = ?

TERMS & Examples(Contd.....)

(iii) Pb & Ag System C=2 ; P = 1, 2 or 3 ; F = 2, 1, 0

NB : There are no (chem or phys) relation between Pb & Ag % Pb = 100 - % Ag is only a mathematical relation

 DEGREES OF FREEDOM, F (Variables): Minimum number of independent variables that must be fixed in order to understand the system fully.
 The values of P & F depend on the condition

PHASE RULE - Derivation

F = C-P+2 (Gibbs Phase Rule)
Degrees of freedom (F)

Total No of variables – Total No of equations connecting them.

Total No of variables:

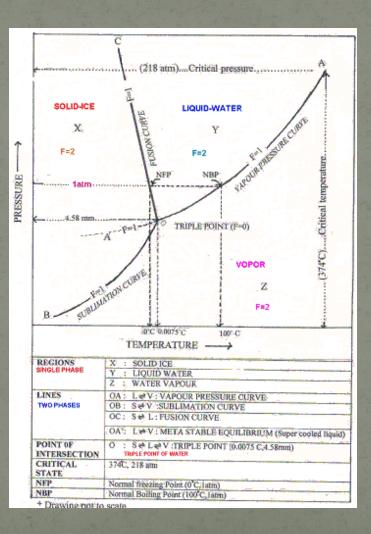
Conc.variables
C-1 for each phase
P(C-1) for all P phases + 2 (For P & T)

PHASE RULE – Derivation (Contd...)

Total No of equations P-1 (For each component) ; C(P-1) For all the ' C ' components

Hence, $F = {P(C-1)+2} - C(P-1)$ = C-P + 2

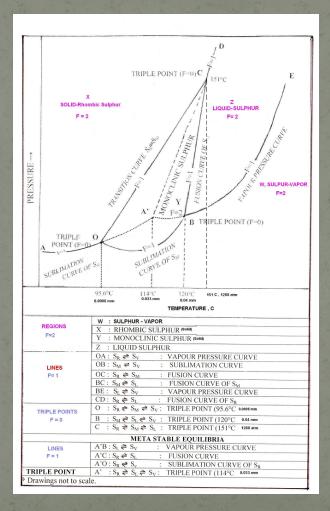
PHASE CHANGES

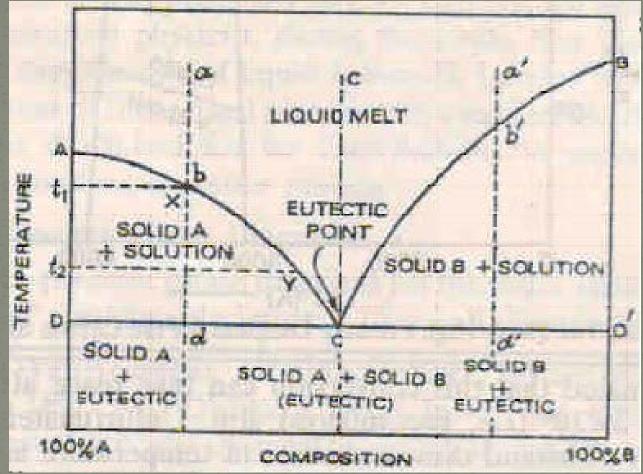

dG=VdP-SdT = 0 (For equilibrium) Clapeyron equation $dp/dT = \Delta H/(T\Delta V)$ Solid Liquid (Fusion or Melting) Clausius-Clapeyron equations (Vapors) $d(lnp)/dT = \Delta H/(RT^2)$ Liquid Vapour (Vaporisation) Solid Vapour (Sublimation)

SYSTEMS TO BE STUDIED

PHASE DIAGRAM OF

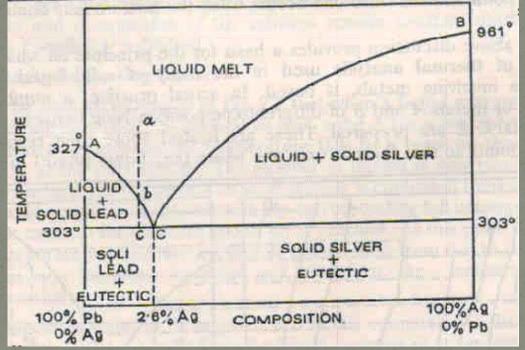
- One Component Systems
 - Water system
 - Sulphur system
- Two Component System
 - Simple eutectic system Lead-Silver system
- Compounds with congruent melting point. Ferric chloride-water system
- Compounds with incongruent melting point(SS). Sodium sulphate-water system


Water system

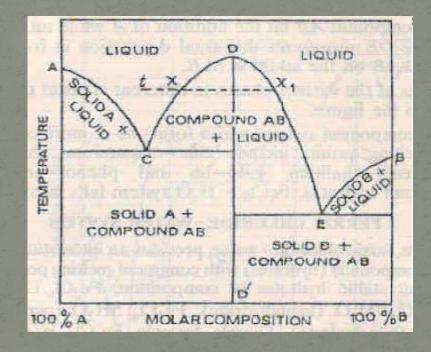

Water System-Discussion

- Curves-Sublimation, Vaporization, Fusion
- 2. Meta stable equilibrium curve
- 3. Ice Water curve has –ve slope
- 4. M.P of ice decreases with increase in p
- 5. Areas :F=2 ; Lines :F=1
- 5. Triple point: $F = 0,0.0075^{\circ}C,4.58 \text{ mm Hg}$
- Critical state 374°C, 218 atm

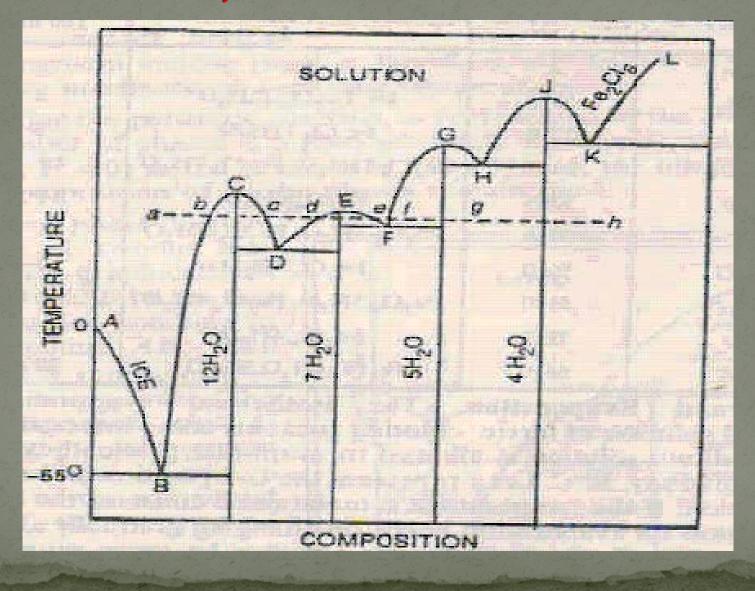
SULPHUR SYSTEM



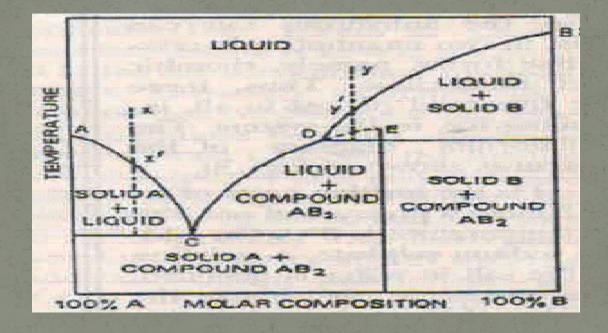
Simple eutectic system-General



A Real Property in


Simple Eutectic(Lead-Silver System)

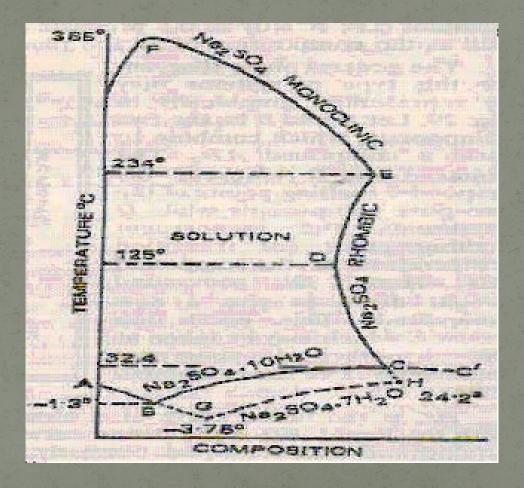
Compounds formation with congruent melting point.


Ferric chloride-Water system

Fe₂Cl₆-Water System : Details

POSITIONS	PHASE (S) at Equilibrium	С	P	Temp	F
Α	Ice _(s)	1	2	0°C	0
Curve-AB	$Ice_{(s)} + $ Solution of Fe_2Cl_6	2	2		1
В	$\frac{\text{Ice}_{(s)} + \text{Solution of Fe}_2\text{Cl}_6 + \text{Fe}_2\text{Cl}_6.12\text{H}_2\text{O}_{(s)}}{\text{Fe}_2\text{Cl}_6.12\text{H}_2\text{O}_{(s)}}$	2	3	-55°C	0
Curve-BC	Solution of $\operatorname{Fe}_2\operatorname{Cl}_6 + \operatorname{Fe}_2\operatorname{Cl}_6.12\operatorname{H}_2\operatorname{O}_{(s)}$	2	2		1
С	$\text{Fe}_{2}\text{Cl}_{6}.12\text{H}_{2}\text{O}_{(s)} + \text{Solution of Fe}_{2}\text{Cl}_{6}$	1	2	37°C	0
Curve-CD	$\operatorname{Fe}_{2}\operatorname{Cl}_{6}.12\operatorname{H}_{2}\operatorname{O}_{(s)} + $ Solution of $\operatorname{Fe}_{2}\operatorname{Cl}_{6}$	2	2		1
D	$\begin{array}{l} Fe_2Cl_6.12H_2O_{(s)} + \textbf{Solution} \text{ of } Fe_2Cl_6 \\ + Fe_2Cl_6.7H_2O_{(s)} \end{array}$	2	3	26°C	0
Curve-DE	Solution of $\operatorname{Fe}_2\operatorname{Cl}_6 + \operatorname{Fe}_2\operatorname{Cl}_6.7\operatorname{H}_2\operatorname{O}_{(s)}$	2	2		1
E	$\text{Fe}_{2}\text{Cl}_{6}.7\text{H}_{2}\text{O}_{(s)} + \text{Solution of Fe}_{2}\text{Cl}_{6}$	1	2	32.5°C	0

Compound with incongruent melting point. Peritectic Reaction(Change)-General



Compound formation with

incongruentmelting point-Examples

- NaCl-Water (NaCl.2H₂O)
- $CaCl_2$ -Water (CaCl_2.6H_2O)
- Na₂SO₄-Water
 - $(Na_2SO_4.10H_2O, Na_2SO_4.7H_2O \& Na_2SO_4.4H_2O)$

Sodium sulphate-Water Perttectic Change

Uses of Eutectic Systems (Freezing mixtures)

System	% Salt in the Eutectic	Eutectic Temperature °C
NaCl.2H ₂ O-lce	23	- <mark>22</mark>
KI-Ice	<mark>52</mark>	-23
CaCl ₂ .6H ₂ O-lce	15.2	-55.9
NaNO ₃ -Ice	33.3	<mark>-18</mark> .1
NH ₄ CI-Ice	20.1	-16

Uses of Eutectic Systems (Low melting alloys)

- Wood metal:50% Bi ; 25% Pb; 12.5% Sn & 12.5% Cd-mp=65°C
- Safety devices: Fuse wires ; Plugs

Thank you