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Exciton binding energy in a pyramidal quantum dot
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Abstract. The effects of spatially dependent effective mass, non-parabolicity of the conduction band and dielectric
screening function on exciton binding energy in a pyramid-shaped quantum dot of GaAs have been investigated
by variational method as a function of base width of the pyramid. We have assumed that the pyramid has a square
base with area a × a and height of the pyramid H = a/2. The trial wave function of the exciton has been chosen
according to the even mirror boundary condition, i.e. the wave function of the exciton at the boundary could be
non-zero. The results show that (i) the non-parabolicity of the conduction band affects the light hole (lh) and heavy
hole (hh) excitons to be more bound than that with parabolicity of the conduction band, (ii) the dielectric screening
function (DSF) affects the lh and hh excitons to be more bound than that without the DSF and (iii) the spatially
dependent effective mass (SDEM) affects the lh and hh excitons to be less bound than that without the SDEM. The
combined effects of DSF and SDEM on exciton binding energy have also been calculated. The results are compared
with those available in the literature.

Keywords. Pyramid quantum dot; dielectric screening function; spatially dependent effective mass; exciton;
GaAs; non-parabolicity.
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1. Introduction

Due to the vast development in the field of nanotechnol-
ogy, the problems of low-dimensional semiconducting
systems achieved immense interest in the past few
years. The advanced techniques of nanotechnology
have made carrier confinement to be possible in a
quantum dot (QD) with different shapes. These struc-
tures may generate unique properties and they show
immense potential in the field of opto-electronic device
fabrication [1].

Theoretical investigations on hydrogenic donor and
exciton in quantum nanostructures made of semicon-
ductors play an important role in understanding the
electrical and optical properties of the nanostructures
[2,3]. Theoretical and experimental studies on exciton
binding energy have been reported for cylindrical QD
[4], spherical QD [5], rectangular and parabolic QDs [6].
The results confirmed that strong confinement leads to
more bounded excitons.

Spatially dependent effective mass (SDEM) and
dielectric screening function (DSF) affect the exciton

binding energy. Effect of the dielectric function on exci-
ton binding energy in GaAs and GaAs/Ga1−xAlxAs
superlattices has been studied as a function of well width
[7]. The effect of DSF on binding energies of the donor,
acceptor and exciton in finite quantum well (QW) of
GaAs/GaAlAs has been demonstrated in the presence
of magnetic field [8]. Deng et al [9] have calculated
the effect of spatial variation of dielectric screening on
binding energy of impurity states in a spherical QD as a
function of dot radius. Effect of SDEM on hydrogenic
impurity binding energy in a finite parabolic QW has
been studied as a function of well width by Qi et al
[10]. Peter and Navaneethakrishnan [11] have investi-
gated the effects of both SDEM and DSF on hydrogenic
donor binding energy in a QD of GaAs/GaAlAs.

Another important effect which should be taken into
account is non-parabolicity of the conduction band with-
out which the result will have a significant error. Nomura
and Kobayashi [12] have compared the Coulomb energy
as a function of size of the CdSe microcrystallite with
and without the effect of non-parabolicity of conduction
band. The effects of conduction band non-parabolicity
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on effective masses of electron and exciton in QD and
ultrathin QW made of GaAs/AlGaAs have been found
experimentally and compared with theoretical model by
Schildermans et al [13]. Sidor et al [14] have investi-
gated exciton diamagnetic shift in QW and quantum
wire InAs/InP theoretically and experimentally as a
function of magnetic field and proved that the results
from the theoretical values using non-parabolicity effec-
tive mass of electron, fitted well with the results obtained
experimentally. Andreani and Pasquarello [15] have
determined theoretically the effects of non-parabolicity
of the conduction band and dielectric constant mis-
match of the well and the barrier materials on exciton
binding energy in GaAs/Ga1−xAlxAs QWs as a func-
tion of well width. Exciton binding energy in a QW of
GaAs/Ga1−xAlxAs have been calculated using pertur-
bational approach by including valence band coupling
and non-parabolicity by Ekenberg and Altarelli [16].

The evolution of growth techniques of low-
dimensional nanostructures allows the production of QD
with pyramid-like shape. Studies on pyramidal QD have
been emerging in the literature. Energy spectrum of elec-
tron states in a pyramid QD of GaAs has been calculated
as a function of vertex angle by Lozovski and Piatnytsia
[17]. Vorobiev et al [18] have studied the energy spec-
tra of an electron in a pyramidal QD with even mirror
boundary condition. Effect of aspect ratio of the pyra-
mid QD (ratio of height of the pyramid to the side of the
base) on the energy of optical transitions has been deter-
mined by Vorobiev et al [19]. Grundmann et al [20] have
investigated the strain distribution, optical phonons and
electronic structure in InAs/GaAs pyramidal QD. The
effect of temperature on the strain and band structure of
InxGa1−xAs QD with pyramidal shape has been studied
by Borji et al [21].

In the present paper, we made an attempt to study
the effects of DSF, SDEM and conduction band non-
parabolicity on exciton binding energy in a pyramid QD
shaped as a square base with even boundary condition.
We have used variational method to calculate the binding
energy.

2. Theory and formulation

The Hamiltonian for an exciton in a pyramidal QD can
be written in effective Rydberg as
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The effective Bohr radius (a∗ = h̄2ε0/μ
∗
ihe

2) and the
effective Rydberg (R∗ = μ∗

ihe
4/2h̄2ε2

0) are used as the
units of length and energy respectively.

2.1 Non-parabolicity of the conduction band

The non-parabolicity of the conduction band can be
defined by the energy-dependent effective mass [22]

m∗
e (Ee) = 0.0665
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e −0.147E3

e

0.0665

)
,

where Ee is the ground-state energy of the electron in
eV.

2.2 Dielectric screening function

The dielectric screening function (DSF) [11] can be
expressed as

1
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)
, (3)

where ε0 is the static dielectric constant of GaAs and c
is the screening constant which is taken to be 0.058 nm.
When the DSF is included, the interaction term in the
Hamiltonian 2/r changes as

2
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.

2.3 Spatially dependent effective mass

For a barrier model, SDEM [11] is given by

1

m (r)
= 1

m∗ +
(

1 − 1

m∗

)
exp (−ζr) , (4)

where m* is the effective mass of the carrier and ζ is
a constant which is taken to be 0.01 a.u. This value is
chosen because as r → 0, the particle is strongly bound
within the δ function well and as r → ∞, the system
becomes 3D.

2.4 Pyramidal quantum dot

Figure 1 shows the shape of the pyramidal QD with
square base a × a. Here, a is the side of the square
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Figure 1. The geometry of the pyramidal quantum dot.

base and H is the height of the pyramid which is taken
to be a/2. The mirror reflection boundary conditions
have been proposed in order to find the solution of the
Schrödinger equation for triangular and hexangular dots
[18] and they are even and odd mirror boundary condi-
tions. In the case of odd mirror boundary conditions,
the wave function at the boundary could be zero, i.e. the
particle cannot penetrate into the barrier and this situa-
tion corresponds to the case of strong confinement. The
even mirror boundary condition describes the weak con-
finement, when a particle can penetrate into the barrier
and return into the confined volume, i.e. the wave func-
tion at the boundary could be non-zero. In this work, we
consider even mirror boundary conditions.

The trial wave function for the ground-state exciton
in a pyramidal QD with even mirror boundary condition
is taken to be of the form [18]
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where λ is the variational parameter and N is the nor-
malisation constant. 〈H〉 is evaluated as a function of the
variational parameter using the Hamiltonian in eq. (1)
and the trial wave function in eq. (4) as

〈H〉 =
∫

�∗H� dτ∫
�∗ �dτ

. (6)

The binding energy (EB) of the exciton is then given by

EB = Ee + Eh − 〈H〉min, (7)

where 〈H〉min is the minimised value of 〈H〉 with respect
to the variational parameter λ. Ee and Eh are the ground-
state energies of the electron and the hole respectively
in bare pyramidal QD calculated from

Ei = h̄2k2

2mi
and k = 2π

a
.

3. Results and discussion

The parameters for GaAs [23] used in the calculations
are (i) effective masses of hh, m∗

hh = 0.34m0, lh,
m∗

lh = 0.094m0 and electron, m∗
e = 0.0665m0; (ii)

reduced masses of lh-exciton, μ∗
lh = 0.05562m0 and

hh-exciton, μ∗
hh = 0.03895m0, where m0 is the free

electron mass; (iii) dielectric constant ε0 = 13.2.
In figure 2, we have displayed the variation of lh and

hh exciton binding energies in a pyramidal QD as a func-
tion of length of pyramid base a while the height of
the QD is a/2. It is observed that the binding energy
increases as length of the base decreases for both hh
and lh. This is due to the compression of exciton wave
function in the pyramidal QD.

It is also noted that the lh-exciton binding energy is
lesser than that of hh-exciton for a given value of a. The
difference in binding energy for lh and hh excitons is
more pronounced only for a < 4 nm. A comparison
of binding energies of excitons in GaAs pyramidal QD
with the results of that in InAs pyramidal QD reported
by Grundmann et al [20], shows that the binding energy
in GaAs pyramidal QD is slightly larger than that in
InAs for a given pyramid base length. Results for a < 4
nm and exclusive results for lh and hh excitons are not
available in their paper for better comparison.

The effect of the conduction band non-parabolicity
on binding energy of lh and hh exciton is presented
in figures 3 and 4 respectively. It is observed that the
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Figure 2. Exciton binding energy as a function of length of
the base.
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Figure 3. Binding energy of lh-exciton with and without the
effect of non-parabolicity of the conduction band.
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Figure 4. Binding energy of hh-exciton with and without the
effect of non-parabolicity of the conduction band.

binding energy of the exciton increases when the non-
parabolicity of the conduction band is included. This
may be due to the enhancement of effective mass of
the electron during the inclusion of non-parabolicity of
the conduction band. For both lh and hh excitons, it is
important to note that the effect of non-parabolicity is
negligible for large base length (above 40 nm) of the
pyramidal QD and it is important for small base length
(below 40 nm). This behaviour is qualitatively similar to
the case of quantum well of GaAs [15,16]. But the val-
ues of binding energy in this QD are larger than those
in QW, which implies that the conduction band non-
parabolicity affects a QD more than a QW, due to the
confinement of exciton in 3D.

Figure 5 shows the variation of lh exciton binding
energy as a function of a, for four different cases: (i)
without DSF and SDEM, (ii) with DSF, (iii) with SDEM
and (iv) with DSF and SDEM. It is seen from the fig-
ure that the inclusion of DSF increases the lh-exciton
binding energy only for small a upto 4 nm, and above
that the binding energy is insensitive to DSF and this
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Figure 5. Binding energy of lh-exciton with the effects of
DSF and SDEM.

behaviour is the same as in the case of exciton in finite
GaAs/GaAlAs QW [8] and impurity states in spherical
QD [9].

Another important result is that the inclusion of
SDEM decreases the lh-exciton binding energy for small
a. There is no appreciable change in binding energy
when the effective mass varies with spatial distance
between the electron and the hole for large pyramid base
length. Hence the SDEM is insignificant for large sized
pyramid. The effect of SDEM on the binding energy of
the exciton is in contrast with that of the donor, in a
parabolic QW [10] and quantum dot [11], because the
average reduced mass of the exciton decreases due to
the effect of SDEM but in the case of the donor, the
effective mass increases. Studies on the effect of SDEM
on exciton binding energy is sparse in the literature to
compare our results. The combined effects of SDEM
and DSF cause the binding energy to be larger than that
of excluding the DSF and SDEM and are lesser than that
of including the DSF only.

The effects of DSF and SDEM on hh-exciton binding
energy are shown in figure 6. It is observed that there
is no appreciable change in binding energy when the
SDEM is included for hh-exciton. But, as in the case
of lh-exciton, binding energy of hh-exciton increases
by varying the dielectric constant with respect to the
radius.

The effect of conduction band non-parabolicity on
exciton binding energy is not studied along with the
effects of DSF and SDEM because of the difference in
the range of a in which these effects are pronounced.

Figures 7 and 8 respectively show the variation of dif-
ferences in binding energy of lh and hh-exciton between
the cases including and excluding DSF and SDEM. It
is noted that, for both the cases of lh-exciton and hh-
exciton, for the inclusion of DSF and inclusion of both
DSF and SDEM, the binding energy changes markedly



Pramana – J. Phys.  (2018) 90:57 Page 5 of 6  57 

0

50

100

150

200

250

300

350

0 2 4 6 8 10

B
.E

 o
f h

h-
ex

ci
to

n 
  m

eV

Length of the base (a)      nm

Without DSF and SDEM

With DSF

With SDEM

With DSF and SDEM

Figure 6. Binding energy of hh-exciton with the effects of
DSF and SDEM.
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Figure 7. Difference in binding energy of lh-exciton includ-
ing and excluding the effects of DSF and SDEM.
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Figure 8. Difference in binding energy of hh-exciton includ-
ing and excluding the effects of DSF and SDEM.

upto 4 nm and beyond that the changes in binding energy
is nearly zero. It is also noted that, for the inclusion
of SDEM, variation of binding energy of lh-exciton
is larger than that of hh-exciton. In the case of hh-
exciton, the difference in binding energy between the
cases including and excluding SDEM is very small,
about 0.6 meV.

4. Conclusion

We have investigated the lh and hh-exciton binding
energy in a pyramidal QD of GaAs with even mirror
boundary conditions with and without non-parabolicity
of the conduction band. The results imply that the exci-
ton binding energy with non-parabolicity is larger than
that with parabolicity. Hence, crafting the conduction
band of the quantum dot material as non-parabolic
leads to enhanced binding energy. The individual and
combined effects of DSF and SDEM on exciton bind-
ing energy in pyramidal quantum dot are also studied
and the results are as follows: (i) when the DSF is
included, the binding energy of the exciton increases,
(ii) when the SDEM is included, the binding energy
of exciton decreases, (iii) when DSF and SDEM are
included, the binding energy becomes smaller than that
with DSF and larger than that with SDEM. The vari-
ation of binding energy of the exciton with respect to
DSF and SDEM occurs only for strong confinement and
it remains unchanged for large confinement, i.e. above
4 nm. Hence, the SDEM for exciton binding energies
in a pyramidal quantum dot with suitable DSF will be
more fascinating in the probe of interband quantum dot
laser that employ optical transitions between valence
and conduction bands.
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