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Abstract
Wiraless sensar networks (WENs) consist of autonamaus and resource-

limited devices. WSNs operate as stochastic systems because of randomness in the
monitored environments. The behaviour of MSN can be modeled through Markov
Process and transition probabilities are calculated. The challenges of using

Markou Process to WSN discussed in this paper.
Keywords; Wireless sensar networks, Markov decision processes (MDPs).

1; Intraduetion

" Nowadays Wireless Sensor Netwarks (WSNs) is very useful in smart citics.
To make the smart cities, we must interact with the surrounding environment's
dvnamics and objects with the hefp of sensing systems. WSNs operate in
stachastic (random) environments m@er uncertainty. Particularly, a sensor node,
as a decision maker or lagént, applies an action to its environment, and then
transits from a state to another. The environment can encompass the node’s own
properties as well as many of the surrounding objects. In such an uncertain
environment, the system dynamics can be modeled using a mathematical
framework called Markov decision processes (MDPs) to optimize the network’s
desired objectives. MDPs entail that the system possesses a Markov property. In
particular, the future system state is dependent only on the current state but not
the past states. Recent developments in MDP solvers have enabled the sqlution
for large scale systems, and have introduced new research potentials in WSNS.
Since the last century there have been marked changes in the approéch to
scientific enquires. There has been greater realization that probability (or non
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dotorministic) models aro moro realistic than dotorministic model in many
situations. Observations taken at difforont time points rathor than those taken at

a fixed period of time began to engngo tho attontion of probabilities.
In soct\on I1, a discuasion of MDP basic concopt and ita solution mothods

are presented. Thcn in section I1I, we discuss the benofits of MDP Model to WSN.
The challonger of applying MDPa to WSNa are dinounaed In noetion IV. Finnally
the papes 16 eohelnded and summarized I stetion V,

4, Markoev Degision Provoesa

2.1. Stochastic Process
A Stochastic process is a probability modol that desariben the evolution of

~ p ayetem evolving randomly in time.

Definition
The set of possible values of a single random variables Xn of a stochastic

i proeess (Xa, n = 1) {8 lenown as ita state spacs

Definition
x A random process {X(t)} is called a Markov proceass if for (to<ti<ts<.......<tn)

. we have P{X(tn)=an/X(tn1)=an1, X(tra)=ana.... X(t1)=1}=P {X(tn)=an/X(tn.1)=an.1}

, i.e. if the future behavior of the procoss depends only on the present value
' but not on the past values, then tho procees is ealled Markov Proaons.

1 If the above condition 18 satisfled fr 41 n; Ehen the proveds [X(E) 1s valled
% Markev Chaln:

L

'8 Types of stochastic Process

Cr:; o Discrote time, discrete stato spaco

:n I; « Discrete time, continuous state space

i ° Continuous time, discrete state space

mf + Gontinueus time; Continueus state space
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tone of Marlov chains in WSNg, such as data
Thare s many apphioations of Markov chams W), target teacking
; ' b wh g , ': gk
X . n avke (B) sensing coverage (N
SRRTERRTNM and rending (LT gy aeele () ity (13,16,17), It is used for
> \ " \ sy ' - v
CRATLEL MAC daclod operstion (1) (14) aud seeunrity (15,16,
Perdrmanic analins, R . S,
Markev Decision Process (MDP) s used for Stochastic Optimasation (.e.)
b ' - \ NER B > AN 1) AW )t’
R0 obeain the hest setion fo e talen given partiowlar objectives and possibly a se
A Qonstraings \ INs ]
NN Y \ &
11 s naad A dacision waking under wncertatnity (18, 19), For W8Ny, the
ANDP i vead 0 Madal the mteraction between wircless sonsor nede (e, an
[ and thair Surreunding nvironment (e, & system) to optimise an energy
contrel or & routing decision in WSNs

Benefits of MDR models

*  Using MDBs 8o Qruamieally optimizing the network aperations to fit the

phyeioal conditions mesults in Signiffeantly improved resource utilisation (1),
* The MDP model allows a bal

anced design of difforent objectives, for

exsmple, winimiging  energy Qnsumption
coversge. Different works, g A4, diseuss the Approaches of using
MDPs in optimizsiion problems with multiple objectives.

* MDP method can explore the temporsl correl
predicting their future loeations, e.g., (3,6).

*  Therefore, the MDP madel ean be appliéd even for tiny and resource-
lHmited nodes without Ay high computation requirements, Moreoy
nearoptimal solutions can be derived to ApPproximate
policies which enable the design of WRN
burdens.

and maximizing sensing

ation of moving objects and

er,
optintal decision
Rlgorithms with less Computation
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* A Markov decisi
on process (MDP) is an optimization model for decision

makin :

deciai B under uncertainty (18, 19). The MDP describes n stochastic

cisio :

. n process of an agent interacting with an environment or system.
each decision time, the system stays in a certain state s and the agent

choosea an notion a that ia available at thia atate.

Methods
widely used method to

<+ Value iteration (VI): This is the most efficiently and
solve an infinite time horizon discounted MDP This method has many

advantages, e.g., quick convergence, easeé of implementation, and is especially
a very useful tool when the state space of MDPs is very large. Similar to the
forward induction method of a {inite: time horizon MDP, this approach was
also developed based on dynamic programming (1)-
< Policy iteration (PI): The main idea of this method is to generate an
sequence of policies. It starts with an arbitrary policy and updates
the policy until it converges. This approach consists of two main steps,
namely policy evaluation and policy improvement. We first solve the linear - -
equations to find the expected discounted reward under the policy @ and then

e improving decision policy for each state. (1)
Unlike the previous methods, the linear

programming method aims to find a static policy through solving a linear

program (20). The linear programming method is useful for MDPs with
be included as linear equations in the

improving

choose th
& Linear programming (LP):

_constraints since the constraints can

e v

linear program (21).
4 Approximation method: Approximate dynamic programming was developed

i

for large MDPs. The method approximates the value functions (whether

policy functions or value functions) by assuming that these functions can be
, characterized by a reasonable number of parameters. Thus, we can seek the
.  optimal parameter values to obtain the best approximation, e.g., as given in
L. (22, 28and 24), |
#*_ — —
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4 methods ave performoed in an offline

¢ Online learning: The aforemeniione
whon the transition probability funetion ia provided), Howover,

fashion ie.
functiona s unknown.

they cannot be used if the information of auech
Learning algorithms were proposed to address thia problam (26).

8. Challenges of Applying MDPs to WENs

The MDP Model is a powerful analytical tool to addresa atochastio
optimiration problems. The MDP framework has proved its applicability in many
real world applications such as finance, agriculture, sports, ete (26, 30). However,

there are still some limitations that need further research study.

3.1. Time Synchronization

Most existing studies assume perfect time synchronization among nodes.
This assumption enables the network nodes to construct a unified MDP cycle
(sense current state, make decision and take actions, sense new state, etc.
Therefore, the clock of the node must be adjusted to a central timing device (31,
32) for time synchronization algorithms in WSNSs. Besides, the clock may not be
perfectly synchronized because of various delays. The mechanisms to address
these issues must be developed.

.2. The Course of Dimensionality
This is an inherent problem of MDPs when the state space and/or the

action space become large (1). Consequently, we cannot solve MDPs directly by
applying standard solution methods. Instead, approximate solutions are usually
used. The work is present some examples of_ using approximate solutions to |
reduce the complexity of MDP-based methods in WSNs.

1=/]

3.3. Stationarity and Time-Varying Models
It is assumed that the MDP's transition probabilities and rew'.\.mrd function

are time invariable. Nevertheless, in some systems, this assumpfion may be s
infeasible. There are two general methods to deal with non-stationary transition
probabilities in Markov decision problems. In the first solution, an online learning

==
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algorithm, e.g. . '
B, (38, 34), is used to updato the atate transition probabilitios and

]
he reward funotion based on the environmant ahangos,

4. Summary

. This Pilpnr has provided tho oxtensive litor
introduction Markov decision Process model and benefits of MDP 8
methods. Then, challenges of applying MDPs to WSNs have been discussed.
Finally, WSNs find new applications and servos 8 & koy platform in many smart

technologies and internet of thinge.
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