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Abstract 

                               In this article , we considered a perishable inventory control  system in a 

two stage Supply chain.  A two stage Supply Chain having Distribution Center (DC) and 

Retail Vendor (RV) with their respective inventory system has been considered. At retailer 

node, each demand is served with an item from inventory at that node after a random service 

time. For each service, one item from Perishable inventory is used. A two dimensional MDP 

is framed and the optimal decision policy is obtained by minimizing the total cost rate using 

linear programming technique. Numerical examples are provided to illustrate the model at 

many instances to prove the conjective that the service rate to be employed depends only on 

the number of customer in  the system. 

Introduction: 

Supply chain is a network of facilities and distribution options that performs the 

functions of procurement of materials, transformation of these materials into 

intermediate and finished products and the distribution of these finished products to 

customers. Supply Chain exists in both service and manufacturing organizations, 

but the complexity of the chain may vary greatly from industry to industry. 

Inventory decision is an important component of the supply chain management, 

because Inventories exist at each and every stage of the supply chain as raw material 

or semi-finished or finished goods.  Further maintain perishable category of 

inventory in a supply chain is a tedious task rather than the stock  with useful life 

time.  .They can also be as Work-in-process between the stages or stations and 

perishably this time period. Since holding of inventories can cost any where between 

20% to 40% of their value, their efficient management is critical in Supply Chain 

operations 
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The usual objective for a multi-echelon inventory model is to coordinate the 

inventories of the various echelons so as to minimize the total cost associated with 

the entire multi-echelon inventory system. This is a natural objective for a fully 

integrated corporation that operates the entire system. It might also be a suitable 

objective when certain echelons are managed by either the suppliers or the retailers 

of the company. The reason is that a key concept of supply chain management is that 

a company should strive to develop an informal partnership relation with its 

suppliers and retailers that enable them jointly to maximize their total profit. 

Information technology has a substantial impact on supply chains. Scanners 

collect sales data at the point-of-sale, and Electronic Data Interchange(EDI) allows 

these data to be shared immediately with all stages of the supply chain. This 

technology has simplified the task of maintaining perishable inventory in SC because 

of instantly removed of perished item from stock in portable.  

Multi-echelon inventory system has been studied by many researchers and its 

applications in supply chain management has proved worthy in recent literature. As 

supply chains integrates many operators in the network and optimize the total cost 

involved without compromising as customer service efficiency. Even though studies 

related to perishable inventory in SCM is very rare[11]. 

The first quantitative analysis in inventory studies started with the work of 

Harris[9]. Clarkand Scarf[4] had put forward the multi-echelon inventory first. They 

analyzed N-echelon pipelining system without considering a lot size, Recent 

developments in two-echelon models may be found in Q.M. He and SvenAxsater[1] 

proposed an approximate model of inventory structure in SC. One of the oldest 

papers in the field of continuous review multi-echelon inventory system is a basic 

and seminal paper written by Sherbrooke in 1968. He assumed (S-1,S) polices in the 

Deport-Base systems for repairable items in the American Air Force and could 

approximate  the average inventory and stock out level in bases. 

Continuous review models of multi-echelon inventory system in 1980’s 

concentrated more on repairable items in a Depot-Base system than as consumable 

items(see Graves[6,7], Moinzadeh and Lee[9]). All these papers deal with repairable 
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items with batch ordering. Seifbarghy and Jokar analyzed a two echelon inventory 

system with one warehouse and multiple retailers controlled by continuous review 

(R,Q) policy. A Complete review was provided by Benita M. Beamon (1998)[2]. the 

supply chain concept grow largely out of two-stage multi-echelon inventory models, 

and it is important to note that considerable research in this area is based on the 

classic work of Clark and Scarf(1960)[4]. In the case of continuous review 

perishable inventory models with random lifetimes for the items, most of the models 

assume instantaneous supply of order[8]. The assumption of positive lead times 

further increases the complexity of the analysis of these models and hence there are 

only a limited number of papers dealing with positive lead-times[n]. A continuous 

review perishable inventory system at Service Facilities was studied by 

Elango(2001)[5]. A continuous review(s,S) policy with positive lead times in two-

echelon Supply Chain was considered by K.Krishnan and C.Elango[9]. 

 In this paper we considered a inventory system maintained in a service 

facilities at Retailer vendor in tandem supply chain having Retailer vendor(RV) and 

Distribution Centre(DC). One item (perishable) from inventory at RV is used to 

serve the customer. (s, S) policy is adopted at Retail Vender node. Numerical 

examples with served instances are provided to prove as conjective that the service 

rate employed  is depending on the number of customer in the system not on the 

inventory level. 

2 Model Formulation: 

We consider a Supply Chain system consist of Distribution Centre(DC), Retail 

vendor(RV) with service facility and inventory is maintained at both DC and RV 

nodes. For every demand at the retailer node (RV) an item is supplied only after a 

exponential service time with parameter : 0,1,...,n n K   . The waiting space in the 

retailer node has maximum capacity N.  An arriving customer seeing N customers 

already in the system leaves.  

          Demand at RV node follows a Poisson process with parameter ( 0)  .Inventory 

policy adopted at RV node is (s, S) type in which order for Q=S-s>s items are placed 

when the inventory level reaches the level s, and lead time is exponentially distributed 
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with parameter ( 0)  . At DC, items are packed as Q items in one pocket  with 

maximum inventory level nQ(n pockets). The residue policy at DC is of (0,nQ) type 

where the inventory level reach 0, instantaneous replenishment nQ items  to attain 

maximum inventory level. Each item in inventory has the policy rate (>0), with 

exponentially distributed life time. 

Let I0(t) and I1(t) denote the on-hand inventory levels at retailer node and  

Distribution Centre respectively at time t
  

with maximum inventory level S and nQ 

respectively
 
and L(t) denote the number of customers in the waiting space at time with 

maximum capacity N. From the assumptions on the input and output processes,  

 0( )     ( ( ),L(t)) : 0 I t I t t   is a Markov process with state space  

   0,1,2,..., 0,1,2,...,E S x N
 .  

Here we ignore the  inventory level I1(t) at DC, because it has no influence on 

the service process at retailer node, moreover its replenishment policy is 

instantaneous.         
 

Now the process   0(t) (t),L(t) : 0I I t   is a two dimensional Markov Process 

with state space.   , : 0,1,2,..., ; 0,1,...,E i j i S j N   . Since E is finite and all its 

states are recurrent non-null, } 0t),t(I {   is an irreducible Markov process with state 

space E and it is also an Ergodic process. Hence, the limiting distribution exists and is 

independent of the initial state. In this article our objective is to find a policy that 

specifies the expected service rate adopted so as to minimize the long run expected 

cost rate.  

The cost associated with the system operation have the following components: 
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h: inventory carrying cost per unit time. 

c1: cost per order. 

c2:  waiting time cost per unit time 

g: cost per customer lost. 

n : cost associated with using rate n , 
0 0  . 

p: perishing cost per unit.  

3 Analysis  

3.1 System Analysis 

Let 
0 0( ,L ) { ( );L ( ) 0}R R R RI I t t   denote the  Markov process 

,
 when a stationary 

policy R is adopted. From our assumptions, it can be seen that the controlled process 

0( ,L )R RI  is a finite state semi-Markov decision process. A policy R is called a 

stationary policy if it is randomized, time invariant and Markovian. Further, a process 

is said to be completely Ergodic if every stationary policy give rise to an irreducible 

Markov chain. From our assumptions it can be seen that for every stationary policy f , 

0( ,L )f fI  is completely Ergodic. Since the action space is also finite, a stationary 

optimal policy exists. Hence we consider the class   of all stationary policies. 

 Denote by ( )k the action of choosing rate ( 0,1,2,..., ).k k N  Whenever  L( ) 0t   

or 0( ) 0I t  , we must choose the rate 0 . Based on the choice of actions, the state 

space E  can be partitioned as follows: 

E1= {( , ) : 0 , 0; 0,0 },i q i S q i q N      E2= {( , ) :1 ;1 },i q i S q N      

E=E1E2. 
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Let Aj (j=1,2) represent the set of all possible actions of the system when it belongs to 

the set Ej. 

Then we have A1={0}, A2={( ) :1 }k k N   and A=A1A2 

A decision rule from the class f is equivalent to a function f:E  A and is given by 

( , ) {( );( , ) , ( ) , 1,2}jf i q k i q E k A j    . 

For any fixed f F and ( , ),( , ) ,i q j r E define 

0 0( , , ) Pr{ ( ) ,L ( ) | (0) , (0) }, ( , ),( , ) .f f f f f

iqP j r t I t j t r I i L q i q j r E     
                           

(1) 

Then ( , , )iqP j r t
 

satisfies the Kolmogorov forward differential equations. As each 

policy, f , results in an irreducible Markov chain and action spaces are finite, 

 
( , ) lim ( , , )f

iq
t

P j r P j r t



 
exists and is independent of the initial conditions. 

Hence we have the balance equation (2)-(13) given below. The balance 

equations can also be obtained by using the fact that transition out of a state is equal to 

transition into a state. For example, let us consider a typical state is equal to transition 

into a state. For example, let us consider a typical state ( , )j r that lies in the range

1 1;1 1.s j S r N       This state is represented in Eq.(12) below. when (j, r) is in 

this range, there is no order pending, and hence transition out of this state can be only 

due to either a demand or a service completion. This fact is reflected on the left-hand 

side of Eq.(12) A service completion in state ( 1, 1)j r   will decrease both the 

inventory level and the number of customers by one unit, thus bringing it to state 

( , )j r . State ( , )j r can be reached from state ( 1, 1)j r  when a customer arrives. These 

International Journal of Computational and Applied Mathematics. ISSN 1819-4966 Volume 12, Number 1 (2017) 
                                          © Research India Publications http://www.ripublication.com

523



 

are the only two possible ways of reaching state ( , )j r  and are reflected on the right-

hand side of Eq.(12). The state (i,j) will transmit to (i-1,j) with state of transition i  

where 0≤  ≤1.  

     

 λ  

 

  λ 

 

 k λ 

 

 k 

 β              iƟ  

 

 

       

 fig(2) 

( ) (0,0) (0,1) (1,0) (1,1) (2)f f ff
                                                  

       

( ) (0, j) (0, 1) (1, j) (1, j 1) 1 1 (3)f f f ff
j j N                

(0, N) (0, N 1) (1, ) (4)
ff f

N    
 

 For 1 i s    

(i, j) 

(i, j-1) 

(i, j+1) 

 

 

 

 

 

= 

(i+1, j+1) 

(i+Q,j) 

(i-1,j-1) 

(i-1, j) 
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( ) (i,0) ( 1) (i 1,0) (i 1,1) (5)f ff f
i i              

( ) (i, j) (i, j 1) ( 1) (i 1, j) ( 1, 1),1 j N 1 (6)f f f ff f
i i i j                     

 

( i ) (i, N) (i, N 1) (i 1) (i 1, N) (7)f f ff
              

For s+1 i Q-1   

( ) (i,0) ( 1) (i 1,0) (i 1,1) (8)
ff f f

i i            

( ) (i, j) (i, j 1) (i 1) ( 1, ) ( 1, 1),1 1 (9)f f f f f fi i j i j j N                     

0(i ) (i, ) (i, 1) (i 1) (i 1, N) (10)f f ff
N N         

For Q i S 1,  

 

( ) (i,0) ( 1) (i 1,0) ( 1,1) ( ,0) (11)
ff ff f

i i i i Q             

( ) ( , ) ( , 1) ( 1) ( 1, ) ( 1, 1) ( , ), 1 1 (12)
f f f f f f f

i i j i j i i j i j i Q j j N                      

( ) (i, N) (i, N 1) (i 1) ( 1, ) ( , ) (13)f f f ff
i i N i Q N            

( ) (S,0) (s,0) (14)f f
S    

( ) (S, j) (S, j 1) (s, j), 1 1 (15)f f f fS j N              

( ) (S, N) (S, N 1) (s, N) (16)f f f fS       

The above set of equations together with the condition  

(i, )

(i, j) 1 (17)f

j E






 determine the steady-state probabilities uniquely                         

3.2 System Performance Measures 

1.  
f
(j, r) also gives the long-run fraction of time the system is in the state (j, r), the 

average inventory level  is given by  
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1 0

( , )
s N

f f

j r

I j j r
 

                                                                                                                                    (18) 

2. The expected cost due to different service rates utilized is 

( )

( , )

( , ),f

f

f rI
j r E

j r


   where  
( ) ( )f r n if f r n                                                                     (19) 

3. The reorder rate is given by    1

0

( 1, )
N

f f f

r

s r  


                                                             (20) 

4. The mean waiting time is given by 

[ / ]

2

1 0 1 1 0

1
( , ) ( , )

N SN S mS S
f f f

f
r j m r j

r
j r m j r  

     

                                                                                   (21) 

5. The balking rate is given by 

3

0

( , )
S

f f

j

j N  


                                                                                                                                       (22) 

6. The Expected Perishable rate  

4

1 0

f

S N
f

j r

j  

 


                     

(23) 

The long-run expected cost rate when policy f is adopted is given by 

1 1 2 2 3 4
f

f
f f f f f

IkC hI c c g p                                                                                           (24) 

Where in the steady state, for a given policy f ,  
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f

I  is the average inventory level, 
1

f
 
is the expected reorder rate, 

2

f
 
 is the average 

waiting time for a customer; 
3

f  is the expected balking rate, 
4

f  the expected 

perishable rate and fI  is the expected cost per unit time associated with using the 

different rates. 

Our objective is to find an optimal policy f * for which *f fC C  for every f . 

 

Hence the average cost rate of the system is given by 

1 2
1 0 0 1 0

[ / ]
2

( )
1 1 0 0 ( , )

( , ) ( 1, ) ( , )

( , ) ( , ) ( , )

S N N N S
f f f f f

f
j r r r jr

N S mS S S
f f f

f r
m r j j j r E

r
C h j j r c s r c j r

c
m j r g j N j r




  

   


    

    

   

   

    

    
                       (24)      

4. Linear programming problem  

4.1 LPP Formulation 

 Let us define the variables D(j, r, k) as  

D(j, r ,k)= Pr [decision is k │ state is (j,r)]. 

Then for any stationary policy f, we have D(j, r, k) =0 or 1.Suppose  D(j, r, k) were 

continuous variable (instead of integers), then the semi-Markov decision problem can 

be reformulated as a linear programming problem . For this purpose we consider the 

class of all randomized , time –invariant Markovian policies for which the probability 

functions D(j, r, k) satisfy 

0 ≤ 𝐷(𝑗, 𝑟, 𝑘) ≤ 1 

and   
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( . , ) 1,0 ,0 ; 1,2
ik A

D j r k r N j S i


        

The linear programming problem is best expressed in terms of the variable  

( , , )y j r k , which are defined as  

( , , ) ( , , ) ( , )fy j r k D j r k j r                                                                              (25) 

As y(j, r, k)=Pr[ state is (j ,r) and decision is k],for any given f, we have  

( , ) ( , , )
f

k A

j r y j r k


  (j,r) E                                                                       (26) 

Expressing ( , )
f

P j r  in terms of ( , , )y j r k  in (22) we obtain the following linear 

programming problem: 

Minimize 

       

2
1 1 0

2 ( . ) , 0

1
111 1 11

1 1 0 11 1

( 1, , ) (0, , 0)( , , ) ( ,0,0)

1
( , , ) ( , , ) ( , , ) ......(27)

( , , )
K N S

k r jk

j r E r

K S N S K N

k
rkj r jk

N
K mS S K SS

k
m r j jk k k

y s r k g y N cC h j y j r k h jy j c

m y j r k g y j N k y j r k

r
y j r k

c




 


  

 

  

     

    

 

   

     

 

1

K



                 

The constraints of the linear programming problem are as follows: 

      a) From (25), we have  

( , , ) 0y j r k   ( , ) , , 1,2l lj r E k A l                                                                       (28) 

      b) Since  
( , )

( , ) 1f

j r E

P j r


  
we have from (26) 
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2

1 ( , )

( , , ) 1
l ll j r E k A

y j r k
  

                                                                                    (29) 

       c) The remaining constraints are the balance equations. After discarding the last 

equation as  redundant in the set of equations, we have  

0

( ,0,0) ( ,0,0)
S

j

y S y j 


  ,                                                                               (30) 

1 1 0

( ) ( , , ) ( , , ) ( , 1, ),1 1
K K S

k

k k j

y S r k y j r k y S r k r N   
  

        ,                       (31) 

1 1 0 1

( , , ) ( , , ) ( , 1, ),
K K S K

k

k k j k

y S N k y j N k y S N k  
   

                                         (32) 

1

( ,0,0) ( 1,1, ),
K

k

k

y j y j k 


    s+1 ≤  j  ≤  S-1,                                                (33) 

1 1 1

( ) ( , , ) ( 1, 1, ) ( , 1, ),
K K K

k k

k k k

y j r k y j r k y j r k   
  

          

                                                         s+1≤  j ≤ S-1; 1≤  r≤ N-1                     (34) 

1 1

( , , ) ( , 1, )
K K

k

k k

y j N k y j N k 
 

   ,           γk y j, M, k N
j=1 =  λy j, N − 1, k N

j=1 ,s+1 ≤

𝑗 ≤ 𝑆 − 1                          (35) 

1

( ) ( ,0,0) ( 1,1, ),
K

k

k

y j y j k  


    1≤ j ≤ s                                                   (36) 

              
1 1 1

( ) ( , , ) ( 1, 1, ) ( , 1, ),
K K K

k k

k k k

y j r k y j r k y j r k    
  

          

                                                                     1 ≤ j ≤ s  ; 1≤ r ≤  N-1         (37) 

1 1

( ) ( , , ) ( , 1, )
K K

k k

y j N k y j N k  
 

    , 1 ≤  j ≤ s                                          (38) 
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1

( ) (0,0,0) (1,1, ),
K

k

k

y y k  


                                                                       (39) 

 
1 1 1

( ) (0, , ) (1, 1, ) (0, 1, ),
K K K

k

k k k

y r k y r k y r k   
  

        1 ≤  r ≤ N-1         (40)                                                           

 

      As we can see from the lemma below solving the linear programming problem 

gives the optimal solution when the 𝑦 𝑗, 𝑟, 𝑘 𝑠  are constrained to be integers. 

        The optimal solution of the above linear programming problem yields a 

deterministic policy. 

        From equations (25) and (26), we have 

            D(j, r, k)= 
 

 
0

, ,

, ,
K

k

y j r k

y j r k



                                                             (41) 

Since the decision problem is completely ergodic, every basic feasible solution to the 

above linear programming problem has the property that for each (j,r) ∈ 𝐸,D(j,r,k) is 1 

for exactly one value of k and zero for all other values of k. Thus ,given the amount of 

inventory on-hand and the number of customers in the system ,we have to choose the 

service rate k  for which D(j,r,k) is1.Hence any basic feasible solution of the linear 

programming yields a deterministic policy. 

5.Numerical illustration and discussion 

 In this section ,we illustrate the method described in section 4 through 

numerical examples . We use the simplex package in TORA for solving the linear 

programming  problem . In all cases the computational time was less than 10 s on a 

PENTIUM 3.0 alpha machine. 

    It is our conjecture that the service rate to be employed depends only on the 

number of customers in the system and not on the inventory level. This conjecture can 
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be proved for the zero-leadtime case assuming  that the same   is used for all states. 

Then the expected cost rate is, 

1
2

1 1 0 1 1

1
( ) ( , ) ( , ) ( ) ( , ),

[ (1) / ] 2

K S S S N

k j j j r

c S
C h c kmP j k g P j N P j r

S m
  

      


    


      (42) 

                                                                                                                             

Where m=1/   and  

       
1 ( / )

(1)
1 ( / )N

 


 





                                                                                       (43) 

For 0 ;1 ,j S r N                                                                                                        

           ( , )P j r =

1

( ,0)

r

P j






 
 
 

                                                                               (44) 

For ,0 Sj   

          ( ,0)P j =
1

1 1 ( / )

1 ( / )NS

 

  




                                                                            (45) 

      In  the above equations, ( )  ,  an increasing function of   , is the cost associated 

with service rate    . By differentiating  C(  ) with respect to , it is easy to verify 

that the stationary  value of    is independent  of the inventory level. When different 

service rates are used for different states ,we were unable to prove the conjecture . 

However, from the  numerous numerical examples we ran, we found that the service 

rate is insensitive to changes in the inventory level and replenishment rates. 

Furthermore, service rates also seem to be independent of ordering costs, inventory 

carrying costs and balking costs. 

        The only three parameters that have appreciable effect on the service rates are the 

arrival rate, the waiting time costs and the number of customers in the system . 

         Typical  numerical results , from one of the examples we studied, are 

summarized in Tables 1-2, where n is the number of  customers in the system. The 

International Journal of Computational and Applied Mathematics. ISSN 1819-4966 Volume 12, Number 1 (2017) 
                                          © Research India Publications http://www.ripublication.com

531



 

first two tables show the effect of changes in waiting  time costs .In the above two 

tables, we use  1=1,  2=2,  3=3, 4=4. 

         Two immediate conclusions can be drawn from the computational results in 

Tables 1-2: 

(1)  As the cost of waiting ,c2, increases, larger service rates are utilized for 

larger values of n. For examples, in Table 1,when c2=1,  1=1is used for all n 

values, expect for n=9,10, where  2=1 is utilized .When c2=10 , 1=1is not 

used at all and  2,  3,  4  are used for respectively 64,31  nn  and 

107  n  

(2)  As the arrival rate   is increasing , larger service rates are utilized for larger 

values of n . We note that for a service facility ,a large number of customers 

(n) waiting is equivalent to poor service. Therefore the conclusions above are 

quite important as they show that the model can be used to decrease the 

average waiting time (providing good service) by selecting the appropriate 

service rates in a cost effective way. 

Tables 1 

Optimal rates for  c1=50,h=0.1,g=2, p=3

1 2 3 41, 2, 3, 4, 25, 6, 10, 7, 0.3S s N               

C2  1=1  2=2  3=3  4=4 

1 81  n  109  n  _ _ 

2 71  n  108  n  _ _ 

3 61  n  107  n  _ _ 

4 51  n  96  n  n=10 _ 

5 41  n  85  n  109  n  _ 
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6 31  n  74  n  98  n  n=10 

7 31  n  64  n  87  n  109  n  

8 21  n  53  n  76  n  108  n  

9 1n  42  n  75  n  108  n  

10 _ 31  n  64  n  107  n  

 

Tables 2 

Optimal rates for  c1=50,h=0.1,g=2, p=3

1 2 3 41, 2, 3, 4, 25, 6, 10, 7, 0.3S s N                

C2  1=1  2=2            3=3                         4=4 

1 91  n  n=10 _ _ 

2 81  n  109  n  _ _ 

3 71  n  98  n  n=10 _ 

4 61  n  87  n  109  n  _ 

5 41  n  65  n  107  n  _ 

6 41  n  65  n  97  n  n=10 

7 41  n  n=5 86  n  109  n  

8 31  n  n=4 75  n  108  n  

9 21  n  _ 73  n  108  n  

10 n=1 n=2 63  n  107  n  
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   In Table1, the costs associated with the different rates are linear functions of 

the rates (
i i  and 2i i  ,respectively). In Table 2 where there is a steeper 

increase in a cost for changing the rate from  1 to  2 ( 1 1 21, 3),      the 

number of states for which rate is  2 is smaller than that in Table 1. For 

example when c2=9, there is no state in which rate  2 is employed and when 

c2=1, 7,8,10, there is only one state in which rate  2 is employed.  

  The case where  n=n   (,n is an integer) can be interpreted 

as a system in which n service are used each serving at a rate  . Hence, the problem of 

determining the number of servers to be employed as a function of the state of the 

system can be solved by using our model by simply taking  n=n  

6.Conclusions and future research 

           Analysis of  inventory control at service facilities is fairly recent. Most of the 

earlier work in this direction has been on the determination of ordering policies or on 

finding optimal stocking levels for a given policy . We approach the problem in a 

different manner . Given an ordering policy , we determine the service rates to be 

employed as a function of the number of customers in the queue and the amount of  

inventory on hand so that the long-run expected cost rate is minimized . The rationale 

is that quite often it is possible to control the service rate by changing the number of 

servers or by using  a faster or slower server, whereas there may be constraints such as 

limited storage size and type of vendors that make it difficult to change the stocking 

level or the frequency of ordering. As such, determination of optimal service rates is 

an important problem in the service industry. 

            In our problem, we use an (s, S) ordering policy. Policies such as one-to-one 

ordering, or (R,Q) systems or any other fixed ordering policy can be analyzed with 

methodology. We used the tools of Markov decision processes to analyze the problem 

and linear programming to determine the optimal service rates. 

            The main contribution of the paper is the determination of the control policy 

that indicates the specific optimal service rate to be used for every possible state of the 
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system . We made two interesting observations. One is that the service rate to the 

employed is insensitive to change in inventory level and depended only on the number 

of customers waiting for service. The second is that the parameters which influence 

the service rates are the customer arrival rates and waiting time costs . It is not 

intuitive that the inventory level ,replenishment rate and inventory carrying costs have 

no effect on the service rate . 

            We are currently studying service system with perishable items having zero 

leadtimes. We plan to extend the analysis to general leadtimes. 
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