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Abstract. In this paper we present multiple handed diamond tile assembly models for
the assembly of discrete Sierpinsky triangle. It generalizes the two handed assembly model
to allow up to h assemblies to combine in a single step. The problem of strict self assembly
of infinite fractals within the self assembly is considered. Six handed Diamond Assembly
Model is constructed in a near perfect way with scale factor 1. We have further assembled the
Sierpinsky triangle within the Three handed Diamond Assembly Model with scale factor 3.
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1. Introduction

Self-assembly is the process by which a collection of relatively simple components, begin-
ning in a disorganized state, spontaneously and without external guidance coalesce to form more
complex structures. The process is guided by only local interactions between the components,
which typically follow a basic set of rules. In fact, self-assembling systems abound in nature,
resulting in everything from the delicate crystalline structure of snowflakes to many of the struc-
turally and functionally varied components of biological systems.

Understanding how to design molecular self-assembly systems that build complex, algorith-
mically specified shapes and patterns promises to be of fundamental importance for the future
of nanotechnology. With the intention of precisely manipulating and organizing matter on the
scale of individual atoms and molecules, several artificial self-assembling systems have been
designed. In order to model such systems, theoretical models have been developed. One of the
most popular among these is the Tile Assembly Model introduced by Erik Winfree. [1]. In [2] the
difference between the standard seeded model (aT AM) of tile self-assembly and the seedless
two-handed model of tile self-assembly (2H AM) is studied. Most of the results suggest that
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the two-handed model is more powerful. In particular, it is shown how to simulate any seeded
system with a two-handed system that is essentially just a constant factor larger.

Winfree [1] showed that the Sierpinski triangle weakly self-assembles and a striking molec-
ular realization of this self-assembly was achieved by Rothemund et al. [3]. Lathrop et al. [4]
proved that the Sierpinski triangle cannot strictly self-assemble. Patitz and Summers [5] exhib-
ited a large class of fractals that cannot strictly self-assemble. The challenging problem is the
strict assembly of fractals in a purely growth (non-detaching) model in which the shape of the
assembly is exactly the shape of the fractal. The problem of the strict self-assembly of infinite
fractals within tile self-assembly is considered in [6]. The tile assembly algorithms for the as-
sembly of the discrete Sierpinski triangle by squared tiles within a class of models called, the
h-handed assembly model (h — HAM) is provided. It generalizes the 2 — H AM to allow up to
h assemblies to combine in a single assembly step.

On the other hand, a theoretical model of pasting system called a Triangular Tile Pasting
System (T'T'PS) is considered in [7] to generate two dimensional patterns that are formed by
gluing triangular tiles and by iso-array grammars. In [8], diamond tile self assembly model is
discussed by simulating a binary counter.

In this paper, we present multiple handed tile assembly models that self-assemble by diamond
tiles for the strict self assembly of discrete fractal patterns. The six handed assembly model
strictly self assembles the non tree discrete diamond Sierpinsky triangle. It works with 34 tile
types and achieves the near perfect assembly with scale factor 1. The three handed assembly
model that strictly self assembles the discrete diamond Sierpinsky triangle with scale factor 3
does not near perfectly assemble.

2. Preliminaries

2.1. Tiles

Consider some alphabet of glue types . A tile is a finite edge polygon with some finite
subset of border points each assigned some glue type from 3. Further, each glue type g € X
has some non-negative integer strength str(g). Finally, each tile may be assigned a finite length
string label, e.g., black, white, 0 or 1. We consider a special class of tiles that are unit diamonds
of the same orientation with at most one glue type per edge, with each glue being placed exactly
in the center of the tile’s edge. Further, for simplicity, we assume each tile center is located at an
integer coordinate in Z2.

2.2. Diamond Grid

Let N be the set of natural numbers {0,1,2,...},Z = NU —N is the set of integers and R is
the set of real numbers. We are working on the two-dimensional grid of integer positions Z x Z
which is rotated 45° clockwise. The directions
D = {ne, nw, se, sw} will be used as functions fromZ x Zt0 Z X Z:
ne(may> = (z,y + 1),nw(x,y) = (‘T -1y),
se(x,y) = (z+ 1,y) and sw(x,y) = (z,y — 1).

We say that (z, y) and (', y') are neighbors if (2, y') € {ne(z,y), nw(z,y), se(z,y), sw(z,y)}.
ne = sw~ ' and nw = se~!. The directions and coordinates of the diamond grid are shown in
(Fig.1)
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Fig. 1. Coordinate Axes and Coordinates of Diamond Grid.

2.3. Diamond Tiles

Formally, a diamond tile ¢ is a 4— tuple (0ype, Onaws Tse, Tsw) € ¥4 indicating the binding do-
mains on the northeast, northwest, southeast and southwest sides. For D € D we write bdp () to
refer to the binding domain of the respective side of diamond tile ¢. According to this definition,
diamond tiles may not be rotated;

(Tnes Tnws Tses Oswy 7 (Tswy Tnes Onuws Ose) -

A special binding domain null represents a non-interaction and the special tile empty = (null,
null, null, null) is used to represent the absence of any other tile. The binding domains determine
the interaction between tiles; that is, when two diamond tiles may be placed next to each other. A
function g : ¥ x X — R where null € ¥ is a strength function if Vo, 0’ € ¥, g(0,0') = g(c', 0)
and g(null,c) = 0. Two diamond tiles that abut on sides labeled o and o bind with strength
g(o, o ), as discussed below. Here, we will only consider g such that mismatched sides have no
interaction strength and matching sides have positive strengths given in integral units, in which

case the strength of a side labeled by o is §(c) € Nand g(o,0 ) = §(o) if o = o, 0 otherwise.

Let 7 be a set of tiles containing the special tile empty. A configuration of 7 is a function
A:ZXZ — T .Wewrite (x,y) € Aiff A(x,y) # empty. For D € D, we say the tiles at (x, y)
and D(z, y) bind to each other with strength g (x, y) = g(bdp(A(z,y)), bdp_1y(A(D(z,y))).
Thick sides have strength 2, thin sides have strength 1. If gl‘% (z,y) > 0, then the diamond tiles
make a bond. If ¢ is a diamond tile, Agf’y) is the configuration such that Agx’y) (z,y) =t and all

(0,0)

other sites are empty. A,

is called the empty configuration.

The free energy of a configuration C' is the sum of all interaction strengths between tiles
G(C) = % ZI,yEZ ZDE'D gg (ZE, y)

The temperature 7 gives the minimal interaction strength required to overcome thermal dis-
ruption. A configuration C' is a 7—stable assembly if for all non-empty configurations A and B
suchthat C = A+ B, G(C) > G(A)+ G(B) + 7. That is a T—stable assembly cannot fall apart
into two pieces without decreasing the total G by 7 or more. Note that for 7 > 0, a 7—stable
assembly must contain a single connected component. When 7 is understood, we simply say that
C'is an assembly.
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2.4. Diamond Tile Assembly System Dp 45

A diamond tile system D74 is defined by the quadruple I' = (7,5, g,7) where T is a
finite set of diamond tiles containing empty, S is a set of T-stable seed assemblies, g is a strength
function and 7 > 0 is the temperature. |S| = 1 where S = Ago’o) for some seed Diamond tile s.

Diamond Tile Self-assembly is defined by a relation between configurations: A — B if there
exists a diamond tile t € T and a site (x, y) such that B = A + Ag’””” and B is T7—stable. Since
G(Agm’y)) # 0,G(B) > G(A) + 7; i.e., a diamond tile may be added to an assembly if the
summed strength of its interactions with its neighbors exceeds a threshold set by the tempera-
ture. —7 is the reflexive, transitive closure of —.The diamond tile assembly system defines a
partially ordered set, the produced assemblies D p,,q(r) Where

Dproary = {A, s € Ss.t.s =1 A}and A < Biff A =7 B.

Another set, the terminal assemblies D;.,p,,(r) is defined as the maximal elements of D poq(r):

Dte'r‘m(l“) = {A € Dp,.od(p), ﬁBSt A< B}

The produced assemblies include intermediate products of the self-assembly process whereas
the terminal assemblies are just the end products and may be considered as the output. If A €
Dproqry = 3B € Dyermry 8:t. A =1 B then I is said to be haltable, in the sense that every
path of self-assembly can eventually terminate. If I' is haltable and Dy, (ry is finite, I' is said
to be halting in the sense that every path of self- assembly does eventually terminate. A halting
tile system uniquely produces C'if Dycrpy(ry = {C'}. If a tile system uniquely produces C' then
Dproq(ry is a lattice: the join of A and B is A U B and the meet of A and B is maa:{C/ €

Dpyroar) st C < (AN B)}. In general, if Dp,,qcry is a lattice, we say that I' produces a
unique pattern — I" need not be halting nor even haltable.

3. Producible assemblies

We are working on the two-dimensional diamond grid described in 2.2. An assembly is a
set of diamond tiles at unique coordinates in Z2. Stable assemblies will necessarily consist of
diamond tiles stacked face to face, forming a subset of the 2D diamond grid denoted by the tiled
locations in the assembly. We refer to any subset of an assembly A as a subassembly of A. For an
assembly A and integer vector ¥ = (v, v2), let Az denote the assembly obtained by translating
each tile in A by vector 7. A shape is any subset of Z? and the shape of an assembly A is defined
to be the shape consisting of the set of coordinate locations for the centers of each tile in A.

If a set of r assemblies are translated together to form a 7—stale assembly then it is said
to be 7— combinable. Formally, a set of stable assemblies {41, Ao, ..., A, } is said to be 7—
combinable into an assembly C' if there exists a set of assemblies {4, Ay, ..., A,/ } such that
each A, is a translation of A4; and C = |J;_, A,/ is a 7— stable assembly.

3.1. Abstract Diamond Tile Assembly Model

A diamond tile system in the Abstract Tile Assembly Model (aDAM) is an ordered triple
I'=(T,s,7) where T is a finite set of diamond tiles called the tile set containing empty, s is an
assembly over 7 called the 7-stable seed assembly and 7 > 0 is the temperature. The set of all
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tiles that are a translation of some tile in 7 is denoted as the set 7 *. Assembly in the aD AM
proceeds by growing from seed assembly s by any sequence of single tile attachments from 7 so
long as each tile attachment connects with strength at least 7.

For a given aDAM system I' = (T, s, 7), the set of producible assemblies for system T,
D proq(r) is defined recursively:
Base: s € DProd(F);
Recursion: For any A € Dp,oqr) and b € T* such that C = A U {b} is 7—stable, then
C € Dpyoq(r)-
we also say A —!' B if A may grow into B through a single tile attachment and we say A —! B
ifA can grow into B through O or more tile attachments. For a shape S, we say a system I
uniquely assembles S'if for all A € Dp,.oq(r) there exists a B € Dp;.oqr) of shape S such that
A =T B. An assembly sequence denoting the possible sequence of growth for a given system is
formally defined to be any sequence (finite or infinite) of assemblies (Ag, A1, Ag, -+ - ) such
that A9 = s and A; —} A, for each i.

3.2. Multiple Handed Diamond Tile Assembly Model

The multiple handed Diamond tile assembly model (hH — DAM) generalizes the two-
handed assembly model to allow for potentially more than two hands. It allows up to a given
number A pre-built assemblies to come together to form a new producible assembly. Formally,
a multiple handed diamond tile assembly system is an ordered triple I' = (7,7, h) where T is
a finite set of diamond tiles called the tile set containing empty, 7 > 0 is the temperature and h
is a positive integer called the number of hands. Assembly in an hH — DAM system (7,7, h)
proceeds by repeatedly combining up to i assemblies at a time to form new 7— stable assemblies.

Fora given (hH — DAM) system " = (T, 7, h) , the set of producible assemblies for system
I, Dproq(r) is defined recursively:

Base: 7" € Dpyoq(r)
Recursion: For any set of r assemblies, 0 < r < h, if a producible set of assemblies (A =
Ay, As, -+ Ar) € Dproaqr) is T—combinable into B, then B € Dp;.oq(r)-

Initially, the assembly set T consist only of stable assemblies. We further restrict 7 to consist
of singleton tile assemblies and thus refer to 7 as the tile set of the system and we refer to |T'|
as the tile complexity of I'. In the case of h = 2, we have the standard two handed Assembly
model in which assembly proceeds by repeatedly combining any pair of combinable assemblies.
A system T is said to finitely assemble an infinite shape X C Z?2 if every finite producible
assembly of I' has a possible way of growing into an assembly that places tiles exactly on those
points in X.

4. Strict Self-Assembly of Diamonds

In this section, we present two constructions for the strict self assembly of Diamond tiles to
produce the non-tree discrete Diamond Sierpinski Triangle. We first construct a 6H — DAM
(Six Handed Diamond Assembly Model) that strictly assembles the Diamond tiles and produce
the non-tree Sierpinski triangle at optimal scale 1 and 34 distinct diamond tiles. Further, this
construction achieves near perfect assembly. Next, we construct a 3H — D AM using only three
hands and works at scale 3.
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4.1. Discrete Diamond Sierpinski Triangle

The discrete Diamond Sierpinski Triangle can be defined as the set Do, = U;’io D; (Fig.2)
where Dy = {(07 O)v (_17 0)7 (Oa 1)7 (_la 1)}’ Di-‘rl = DZU(D1+21V) and V' = {(_27 O)a (01 2)}
D¢, and Dy are factor ¢ scalings of D, and D;.

Fig. 2. Scale 1 Sierpinski triangle.(Dj ).

4.2. Near Perfect Assembly of Diamonds

An infinite fractal pattern P = U;?io P;, where sets P, are obtained by a function f(P;),
is said to be near perfectly assembled by an hH — DAM T = (T, 7, h) of Diamond tiles if the
system assembles P and if :

1. There exists a ¢ such that for all i, there exists an assembly of Diamond tiles A € D py.oq(r)
of shape D 4 such that | P; \ D4 |< c. In other words, for every P;, there exists at least
one producible assembly of Diamond tiles A € D p,,q(ry whose shape is a subset of FP;
smaller by at most a constant number of points independent from 1.

2. For any producible assembly of Diamond tiles A € D p,q(r) » the shape of some transla-
tion of A is a subset of some P;, smaller by at most a constant number of points indepen-
dent from .

4.3. 6H — DAM of Diamond Sierpinski Triangle

We provide a 6 H— D AM of Diamond tiles that assembles the discrete Diamond Sierpinski
Triangle at scale 1 using 34 distinct diamond tiles. The system also assembles the Diamond
Sierpinski Triangle in an idealized manner that we call near perfect assembly. We say that a
system near perfectly assembles an infinite fractal if it will produce assemblies that differ from
some finite stage of the fractal only by a constant number of points. In other words, if we take
any producible assembly in the system, we will find one stage of the fractal that is almost equal
to the shape of the chosen assembly with only a constant number of points missing. The inverse
also will be true; if we pick any stage of the fractal, we will find one or more assemblies that are
almost equal to that stage.
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4.3.1. Theorem

There exists a 6H — DAM of Diamond tiles that near perfectly assembles the discrete Dia-
mond Sierpinski Triangle at scale factor 1 and has a tile complexity of 34.

Proof: We first prove that condition 1 is satisfied by presenting the diamond tiles in the tile set
and describing how they will combine to produce assemblies with a shape that is 3 points away
from an D;, for all D;. We then present that condition 2 is also satisfied by doing induction on the
size (number of tiles) of the producible assemblies and proving that the shape of all producible
assemblies of size greater than 34 must be a subset of a stage of the Diamond Sierpinski Triangle,
smaller by only 3 points.

Considera 6H — DAM T" = (T, 1,6) with tile types T" as shown in Fig. 3 and 7 = 2. The
tile set 1" (made up of 34 Diamond tiles) is designed to meet both conditions required for near
perfect assembly of the discrete diamond Sierpinski triangle. The near perfect assembly feature
of the system is achieved by taking advantage of the six hands and the temperature to prevent any
other wrong assemblies from combining. Each of the large producible assemblies is made up of
six pieces, which must be assembled before they combine into the next stage D; of the Sierpinski
triangle. White lines show a necessary sequence in which the pieces must be constructed in order
to achieve near perfect assembly captured by a single stroke path with single protrusions in the
path of helper tile 3.

¥ V2
S1E!asz EE; Sz BQ By,
B ighg Y 52‘ :51 Yz‘

(a) The “base” assemblies b1, bz and ba. (b) The “helper” assemblies o p and 7

Fig. 3. Diamond Tile set 7' in 6H — DAM.

Condition 1

To satisfy condition 1 of near perfect assembly of diamond tiles, all stages D; of the discrete
diamond Sierpinski triangle need to have at least one assembly with a shape that is almost, by
a constant number of points, equal to that stage. Consider the first stage Dy of the triangle. An
assembly of either by or by or b3 with the left and bottommost four diamond tiles will form the
(2 x 2) diamond tile shape exactly, with no points of difference (Fig. 4). The next stage D
consists of three copies of the Dy shape, one staying in the original’s position, one translated
towards north west direction by 2 points and another one translated towards north east direction
by 2 points. The shape of b; or by or b3 is the closest to D; and it is smaller than this stage by 3
tiles (It is missing the one leftmost, bottommost and rightmost tile) as shown in Fig. 4.

D, follows the same pattern, consisting of three copies of D; translated by the specified
amount. The assembly with the biggest subset of D5 will be composed of the three base assem-
blies, glued together by the set of a, 5 and - helper assemblies shown in Fig.3(b). These six
assemblies will need to form a loop (Fig. 4) joining them all together such that the strength of its
interactions with its neighbors exceeds a threshold set by the temperature 2 or the assembly will
not be 7—stable. The resulting assembly’s shape is a subset of Dy smaller by 3 points captured
by a single stroke path with single protrusions in the path of helper tile 3.
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Fig. 4. Assemblies Dy, D1 and D>.

This process is continued for all of the following stages to meet Condition 1 in the same way:
three copies of the previous assembly are used to satisfy the previous stage, all joined together
by a new set of «, 3 and ~y assemblies. It is shown in Fig.5 for a small part of the system, but
it will be repeated for any D, . The floating pieces are separated to easily distinguish between
the six different assemblies that combined to form a new iteration from the previous one. These
specific assemblies are smaller than an D; for all D; by 3 diamond tiles, and therefore I" satisfies
condition 1 of near perfect assembly of diamond tiles of the Sierpinski triangle.

Fig. 5. Stages of growth for 6H — DAM.

Condition 2
To see how I satisfies condition 2, we first define near-triangle assemblies. Near-triangle assem-
blies are a class of assemblies whose shape is a subset of some stage of the Diamond Sierpinski
Triangle D; with the same 3 corner points missing (the one leftmost, rightmost and bottommost
point). Near-triangle assemblies must also have the same set of exposed glues at the same relative
points. One example of a near-triangle assembly of diamond tiles is the third assembly in Fig.4
that is close to stage Ds. The shape of this assembly is missing the 3 corner points. Further, tiles
at points adjacent to these missing points expose glues that allow only helper tiles to attach. We
use notation A; to denote the near-triangle assembly of diamond tiles with shape close to D; .
Note that all near-triangle assemblies with shape close to D; are of size 4 x 3* — 3 + (1).
Condition 2 is proved by induction on the size of the assemblies, that all producible assem-
blies of size greater than 34 must be near-triangle assemblies. It is clear that assemblies smaller
than 33 are base or helper assemblies, which can only combine to form near-triangle assembly
A, . Consider the near-triangle assembly shown in Fig. 4 (third assembly) of size 33 + (1) as the



Near Perfect Tile Assembling Systems 227

base case. Since the base case (As) is a near-triangle assembly we assume all producible assem-
blies of size greater than 33 + (1) up to assembly A,, of size 4 x 3™ — 3 4 (1), are near-triangle
assemblies of some D; for i < n. Assembly A,, is a near-triangle assembly, which means that
the 3 corner points in D,, are missing from A,, and it also exposes the same glues as all other
near-triangle assemblies.

Only helper tiles can be attached to the exposed glues on near-triangle assemblies, and
helper tiles are attached only to near-triangle assemblies or base pieces, so the assembly of size
4 x 3" — 3+ (1), (or any bigger producible assembly) has to follow the same process as the
one shown in Fig. 5, where three equal-sized near triangle assemblies must be combined with
the three helper assemblies otherwise it is not producible. The process must be followed because
if the three near triangle assemblies are not the same size, the distance between at least two as-
semblies is not filled and the loop described before is not closed as shown in Fig. 6 resulting an
assembly that is not 7—stable. Any other assembly of size 4 x 3™ — 3 + (1), is not producible
since the same type of attachments must happen. In fact, we can be sure that A,, can only grow
into A,, 1 which is a near-triangle assembly of size 4 x 3"T! — 3 4 (1). Otherwise 4,, cannot
grow into an assembly that is not A,, 11, so I' meets condition 2 of near perfect assembly.

Fig. 6. Unstable Near triangle assemblies .

Result We have attained the result as the shape of any producible assembly smaller than size 34
is smaller than an D; by at most 3 points and the shape of anything larger than 34 is smaller than
an D; by 3 points. These are the only producible assemblies satisfying both the conditions. We
conclude that I' near perfectly assembles the discrete Diamond Sierpinski Triangle.

44. 3H — DAM of Diamond Sierpinski Triangle

We present here a 3H — DAM of Diamond Tiles that strictly self-assembles the discrete
Diamond Sierpinski Triangle at scale factor 3. The system does not near perfectly assemble
the Sierpinski triangle, since it relies on many filler assemblies that increase in number as other
assemblies grow.

4.4.1. Theorem
There exists a 3H — DAM T = (T, 7, 3) that self-assembles D3, with |T| = 954.
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Proof: First, we describe the components needed and the formation to assemble the model.

Base Shape: A base shape of D3 is an assembly of diamond tiles with shape D3 that is missing
tiles along the outer edges and the corners of the triangle as shown in Fig. 7(a).

Combinable shape: A combinable shape of D is an assembly of diamond tiles with shape D3
that is missing tiles along two outer edges of the triangle and corner tiles where these edges meet
as shown in Fig. 7(b).

() (®)
Fig. 7. (a) base shape and (b) combinable shape.

Formation of Base Pieces: The process of the base assembly begins by assembling the three
pieces of assemblies shown in Fig. 8. These are the combinable shapes of D3. There are three
sets in total of these combinable shapes of D3, two of which are not pictured here. The yellow
combinable shape of D3 is the left triangle in the next iteration. The white path traces the process
of these assemblies, where tiles connected by the path are connected by unique strength — 2
glues. This pattern ensures that each combinable shape of D$ is completely assembled before
either can assemble into the base shape of D3. Once these combinable shapes of D3 have been
assembled completely, they can be attached to their two corresponding combinable shapes of D?.

Fig. 8. Yellow combinable shapes of D},

Each combinable shape of D$ has two strength-1 glues that are used to construct a base shape
of D3 using cooperative binding. Each strength — 1 glue attaches to one triangle each, forming
a [-stable assembly, as shown in Fig. 9(a). The other two sets of combinable shapes of D not
showed here exhibit the same behavior. These three different base shapes of D3 will be described
as yellow, blue and red. Fig. 8 presents the yellow combinable shapes of D7 that make up the
base shape of D3.
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(2) Three combinable shapes (b) Keystone assemblies attach (©) Right fillers placed.
form a base shape. to the base shape.

(d) Right fillers placed. (e) Right fillers placed. () A combinable shape

Fig. 9. The process of keystone attachment and edge growth.

Keystone Attachments: Keystone tiles are assemblies that cooperatively attach to their corre-
sponding exposed glues, in a nondeterministic manner. For each base shape of D?, one of three
keystones will attach, followed by the filling of an edge of the assembly. This method of assem-
bly is used to produce three different combinable shapes of D?. The assembled base shapes of
D3, described in the previous paragraph, have two exposed glues on a single edge which are sites
of keystone tile attachment. Each assembled base shape of D3 has three keystone tiles that can
attach at their exposed edges. We will describe these keystone tiles by the colors yellow, blue and
red. These three keystone tiles are each split into two sets, so that they must be assembled using
three hands (two for the keystone tiles and one for the base shape of D3 to be properly assembled,
as shown in Fig. 9(b). Each of the three different assembled base shapes of D3 expose keystone
glues on differing edges; a yellow base shape will attach their keystone tiles on the right edge, a
blue base shape on the left edge and a red base shape on the top edge.

Connector Glues: When the keystone tiles have been attached to a base shape of D3, they will
place tiles along the edge of the assembly, matching the color of the keystone tiles that have
attached. This process is shown in Fig. 9(b)-9(f). Whitespace is the area of the assembly that is
part of the shape D3 but is not covered by tiles. Each attachment of these tiles that fill the whites-
pace along the edge takes three hands to assemble, one for the base shape of D3 (along with the
already attached keystone and edge filling tiles) and two for the tiles that fill in the whitespace,
which consists of a corner and the fitting assembly. The new combinable shape of D3 will have
exposed glues that will provide a method of attaching to the corresponding combinable shapes of
D3. This process is shown for a yellow base shape of D3 in 9; in the case of the other base shape
of D3, blue base shape looks like a mirror of the yellow base shape and having the keystone at-
tach by filling tiles along the left edge and a red base shape consists of having the keystone attach
atop the assembly to grow filling tiles along the top edge. The produced combinable shapes of
D3 have exposed strength-1 glues that will allow them to attach to two other combinable shapes
of D3, forming a base shape of D3. Three combinable shapes of D3 will only attach to one
another if they have attached the same type of keystone tile, as shown in Fig. 10.
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Fig. 10. Different combinable shapes to the next iteration.

Infinite Assembly: A base shape of D? will form a combinable shape of D3, and three combin-
able shapes of D? will form a base shape of D7, ; in order to self- assemble the infinite diamond
Sierpinski triangle. If a base shape of D? was designated yellow (using keystone assemblies in
stage D? ), the tiles will be placed along its right edge; if blue, it will be placed along its left
edge; if red, it will be placed along its top edge. The filling tiles are designed to fill in arbi-
trarily long edges using a constant tile set. The three-resulting red, blue and yellow combinable
shapes of D} will be attached to form a base shape of D3} "1 if they have chosen the same key-
stone. The nondeterministic attachment of keystones allows for three combinable shapes of D}
to produce three different base shapes of D? " 1, which will become complementary combinable
shapes of D3} 1. These three combinable shapes of D} "1 can produce base shapes of D} " 9. The
nondeterministic keystone attachment and arbitrary-length filling tiles allow us to self-assemble
the discrete Diamond Sierpinski Triangle using a 3-handed system at scale factor 3 with 954 tile
types; 624 tiles for the base pieces and 330 tiles for the keystone assemblies and filler tiles.

5. Conclusion

We have focussed our problem of multihanded self assembly of diamond tiles on two discrete
fractals in algorithmic self-assembly theory. Pure growth models must decide how to build a
shape through a single mechanism, the placement of tiles, which inherently uses up geometric
space. We have presented two models that strictly self assemble the non tree Sierpinsky triangle.
The 6—handed model uses 34 diamond tile types, works at scale factor 1 and achieves near
perfect assembly. The 3 handed model works with scale factor 3 and uses 954 tile types; 624
tiles for the base pieces and 330 tiles for the keystone assemblies and filler tiles to construct the
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Sierpinsky triangle. We note that D¢ cannot be strictly assembled by any a D AM system which
will be considered as a future work.
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