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Abstract

A proper edge-colonring with the property tho! endry ovele containg adgue of
ot loast thres distinet oolours is called edgo-colonring, The acyelie chiromatio indax
of G, denated y'alG), s the minimum namber k such that G fas o proper edge
ﬁ-(".)l’mﬂ'ur}!. Acyelic Rdge colouring corjecture ‘the ARCC for short), which stafis
that Ya(G) = AG)+2 for all graphs G Finmath prooed in (8] that A/G) {A1G) - 1) 4}
1 on upper bound for the acvelie ehromatic inder of o gragh G and conjectired
that ralG) < AiG)+2, In [1] Alon et al. presented @ linenr spger bovnd an YalG)
They proved that yafG) = GIAG), whick war ioter simproved to 16A(G) by Molloy
ami Reed [IOT In this paper we provide new upper bounds for the aryelic
chromatic index for the classes of planar graphs, J-fold grophs, friongle-frae
plonar graphs and 3-fold raphs,

Keywords: edge - colouring, planar graphs, ehrematic indes

L. INTRODUCTION

A gruphs which we consider are finite and simple. For uny praph G, we
denote its vertee set, edge set. msaximum degroe snd minimum degree hy ViG),
F(G), M) and 8(G), respectively, For a vertex v, its degree is denoted by dGiv) or
sumply div; when no confusion ean arise. For undefined concepls we refor the
reader 1o (71As usual (k| stands for the set {1, k. A mapping C: B(G)l—k| s
called a proper sdps k—mluuring of a graph G provided any two adjoeent adpres
© reccive different colours, A proper edge k-wolouring O of G it called am acyilic
edge k colonring of G if there are no bichromatic eyeles in G under the colouring
. in other words, for mmpni‘r nfdfutim:l: colours i and 3, the subgraph induced
in G by all the edges Mmm’iﬂrnn}nm Lior j, is acyclic. The smallest
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| . k of colours such that G has an acyelic e

dge k-colouring is call d
lie :hrﬂlhlﬂﬂ I.ﬂdﬂx of (3 and s dﬁﬂﬂ[gﬂ; h‘y 1&[[} ; Ih&

3
\ #1G) stands here for the chromatic index of G, defin

ned as the minimam
oumber k such that G has a proper cdge k-colouring
ol w08 of a graph was introduced by Grunbaum
wat later extended to the edge version as

. The notion of acyclic
19] for vertex colouring and it

well. Fiamcik proved in [B] that A (G),
(4 (G141 is an upper bound for the acyclie chramatic indox of a graph G and

| wrjectured that ¥'alG) < AG)+2. In (1) Alon et al, presented a linear upper

| yound on x'a(G). They proved that r'alG) =BANG), which was later improved to
161G} by Molloy and Reed (10].

In (2] Alon et al. independently made the Acyclie Edge colouring conjecture

(the AECC for short), which states that y'alG) < A(G)+2 for all graphs G. In (2]

' this conjecture was proved to be true for random d-regular graphs (asymptotically)
" and for graphs having large girth.
’ The AECC was also verified for some special classes of graphs including
~subcubic graphs [8,13], outerplanar graphs [11] and grid-like graphs [12]. For the
last two classes of graphs the better bound A(G)}+]1 was obtained. In [13]
'Sku]mttmuku]chm presented a linear algorithm to aeyelically enlour, with 5
‘colours, the edges of any cubic graph. Very recently Basavaraju and Chandran
‘proved in [4], that y'a(G) < 4 for any non-regular connected sub.cubic graph G.
They also showed in [5] that x'a(G) = 7 for any graph G of maximum degree 4 and
in [6] that y'a(G) < A(G) +1 for any 2.degenerated graph G. The problem of
fetermining the acyelic chromatic index qf a graph is NP-complete, what was
shown by Alon a.ndZahian] mmﬂnmnﬁnpol}mmal
ﬂgonthm to acyc : edges of a graph G with A(G)+2 colours,
n, t cycle'in G is greater that e(A(G))3, for some

m :fdG[v} k. Similarly,
ost k or at least k, respectively,
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We dencote by lkiv) Irespectively, lkiv). 1ktiv)) the cardinality of the 2et of those
neighbours of v, which ure levertices [respeetively, k- vertices, k* - verticas).

2. PLANAR GRAPHS WITH GIRTH 7
Claim: 2.1

There is no 2.vertex in v in G incldent with vertiees v1 and v2 such that
divY) - d{v2) < A4,

Claim: 2.2

Let u and v be a puir of sub aclacent vertices. IF div) < A, then the number
of 2 vertives adjacent to v is nt most divirdiv) -4 - L,

Claim: 2.3

Let ¢ be a A-vertex subadjucent to a vertex & in G, Then the number of
Z-neighbors of v is at maeat diu),

Claim: 2.4
There in no vertex v in G with div} < A adjacent only 10 2 vertives,

Lemma: 2.1

Let A = 6. Hvery planar graph with girth at lenst 6 and maximom depree
al most Aadmils an acyclic edge calouring with oolours

Lemma: 2.2

Let & = 5. Fvery plaun-.rmph with girth ut least 7 and maximum degree
ut most admits an ncyelic edge enlouring with eolours.

Suppose G i3 u minimal mnﬂb. mpk to Lemma 22. If A = §, then

Lommu 2.2 follows from ’n.m"T- , We may agenme that 4 - 3 und
A} < O

a 2.1 efore,
2.1 l]whlrgilm mlah
Letthcmmial
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sy Euler’™ fermula we have that the suin of charges of verticon and faces
33 Tt s cloar that since g = 7 all the facys have nonnegative charge. Vertices

;Il'l"‘n' 5 haye charge 11, vertioos of degres 4 have charge 8, vortices of depree
e R 1. and vertices of dugree 2 have churge -4.
e Pe pbuta the charge amoag veruges by the following sules:
() Let v B8 0 2vertex with neighbours 9l and v2 suech thae divl} < dw2),
(Rla)Metndi= 2, then v sendd O of charge to v1 and -4 of charge to 2
F Ifdinll = 3, then v senids <105 af chorgre to »1 and It receives -11/3 of change
e
e W =4, thea v sends -2 of charpn to Beth. vl and o2,

Sinee A = B, by Claim 1 for each Zvertex with neighbauns with degrees o]
ol d2 we huve d) ~d2 244 2= 7 It in casy 1o nee that 2vertices send all their

pegative chunge to their neighbours of degres at least 3.

g1.1 S-vertices
Tet » be a Svertex in G. Its initial charge is 1. Ry (R1b) it receives -

1ifrom each its 2 neighbour, kencs its charge 1 at loust 1-d%11d) =0,

2.1.2 4-veriices
Let v he 8 4-vertax in (7. s initin] charge is 6. If it has no Z-nmighbiours,

s charge dues not ckange. By Claim 2.1 it eannok bs 4ud adincent to s 2 vertex.
If it is sub sdjacesnt ta » 3vertex hy Clwim 2. 2 the rumbsar of Z-neighliors af e is
gt most A= 4 - a-1 =1, benee, it has only ona 2 aeighbor from which it receives —
{173 of charge by (K150 [ts change is clenrly nmml:;lﬁw,_l‘f v i8 not sub sdjacent
{0 any © Svertex, then by Claim 2.4 it can huve st most thres 3 reighbaurs, from
which it recsives 2 of change by (Rlc). Ihﬁmkﬁdﬁl&lﬁ- ﬁ“’"’ﬁ =9,

1.8 Gevertices

i charge dors Aot chango,
If v is sab adjacent to Er't._:ﬂ;-_.__ t
voeghbors, which scod at most 4




nilinennt L Wiy Bvorbax and o (s sl 4wy
w Hoverelan, iL hoa b miad Hhiree wonehghbees, whivh send sl imase | 14 af ah

el Thie chargo ol 1s fnant 11051 - 0
IF 0 b ool auly adjacesy Lo Wy S Wovarben, thiam all 108 Lonedghbiey *

of dhigw iy U 3o e chnegy ofvinat lned 11 =0 *8=1 20,
All the versles of € avie nonpagitive shargo, & eonlendletlon Vite

antablialhon (he Temiomm,

eV R R LR LR L nali

[‘I“Hm I-ﬂ
Lt € be o graph sueh thae | BRG] = IV < 1 and BIED & 2 They

contalng ot Jeast one of U fallowlng aonfigarat o
(ALl B deyuriea il /et 4B I «voriox,

(ALY o Beveriox ndjaosnt (0 Bl leant two 5 sperLines,

(A A Bovartox odiseant Le sl lomal five 2 « vertions,

A i Tevertex ndlaeant o aevan B vertices or ,
(AB) & vartex x such that at least dix) ~ 8 of its pelghbatirs ore 3 - vertiom, angg

mmaver one of Wain e of degres 2.

Pronfl
We une the dischanging methed 4o prova the lemma, Lot G = (¥, £), %06) = 2

and |V = (] = m We have m 5 20 -~ 1. Initially, wa will define & mapping 1
en the set of vortloos of G oa follown; for sach x & Vet flx? = dix) - 4. 1t is casy 1o
ohsorve thit Z” %<2 which follows from the inequality m < 2n - 1. In the

dincharging wlop, we rodistribite the values of [ bedwesn adjacent vertices
according ta the two sules deveribed bolow mmwmn

- ['xian 5 vortax, then x dons ot give anything (o its nelghbours

s Ifxis nu--um.mm;mrmm'} ox '

LT

nad 4 to each Mﬂtnlu L hood :
After this procedure, ench v & new value lz). But sines the
ﬂu‘r:“ WE'I" ml, TRy | _,J o




i RAY of they configurntions (A1)
i

La

L

To calenlate the values Aix) we consider o number of ¢

L

i be sonnegative, This lepde
L

§ ) s
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LAS), then for ench vertex x. the value f(x)
U8 Lo 8 cuntradiction with the fact that

Aoz, depending on dix).
=0, because (A1) does ot biold,
V2006 +ix) > 140192 = o becnuee (A2) doen

I dix] = 2, then fixi = 24116 +x) = 242
I dix! = 3, then /(%) =
nol hold.

1f dix) = 4, then ffix) = fix) =0,
If dx) = B, then fix) = flx) = 1,

If dix) = 6, then fix) = 2.1 12(x) = -1/2. 18(x). Lot us initially assume that x

has at least one neighbour of degree 2. Now, tince (AB) does not oecur, x
can have at most dix) - 4 = 6 -~ 4 = 2 neighbours of degree ot most 3, and
henee f(x) > 2 - 2 = 0. For the case when x does not have any neighbour of
degree 2, one can observe thal f(x) = 2-(12). 13(x) > 2 — (1/2).4 = 0, because
(AZ) does oot hold,

If dix) = 7, then fix) = 8 - 1. 12(x) - ¢1/2). 131x). First we will asrume that x
has at least one neighbour of degree 2, Then because (A3) does nob ocour,
we notice that 1 can have at mest 3 and therefore Fix) =8 = § =0, In the oLher
ease where x dond nol have o degree 2 neighbour, we have Plx! = 30120
I%v) =8 . (1/2)8 = 0, sinee {A4) does not bold.

If d(x) = 8, then if x has at least one neighbour of degree 2 and (AB) does
not hald, % ean have at most dix)4 npighboure of degree at most & and
therefore fix)=0. For the case when x does not have a neighbour of degreo
2, we have f(xi=dix)-4-{ 1221 13 x =dix) 4- dix = dix-4=0.

Sinee for cach vortex ¥ of G the valie f(x) is nonnegative, we abtain o

pontradiction with the iﬂtﬂ;ﬂl]“x (1)

3.

?Gm’ k —Cnluurinn an]ﬂ
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LEMMA 3.1
[1-_;l';l;u:nm_mFﬂﬂ}&lﬂlﬂctﬁlﬂﬂ:}ﬂifkmufﬂ_ G

It [ Ofs) UCKx) GOWC~wiV,UD)| < K, then the enlouring C can be extended to an
acyelx E-colsarias of G

Froof
It i= smom=h to colour the edge uv with any colour = from the set [k] - (Q(y)

() UCIWG-soiV.U)) ). to obtsin an sryelic k colouring of G

LEMMA 22

I G i= = graph such thst [EIGY|< 2JW(G)-1 for-each G ¢ G, then
TG = AMG)+ &

We msy assome without loss of generslity that H = 2-connected. Otherwise
we can obtzmn an scyclic k-colouring of each it= 2-connecied component and
combine them (by renaming some colours if peeded) to get an acyclie k-colouring
of the entive grsph.

Hence we have 1) > 2 and, by Lemma 2.3, the graph H contains at lesst
o of the configurations (A1MAB).

Ascording to Lemma 3.1, it is sufficient to show that there exists an edge
vu and an acyciic hﬂﬁhﬂﬁ JCiv) Clu) CIWH-vuiv,u)}|<k.
we will consider @ number of cases hﬂ-lq-whchuru:emnﬁm
AldSocurs m B I ¢ will point out such an edge which we can use

GLUF ATIC N (A =y -

- N -
= -

LN K|

H_E' tains & Zvertex x D & S-veriex ¥, Lthen let £ be the

135__“ rof x ] lei F Hslt. Clearly, 7'2(H") < K let C be
any acyche k-coloaris i anemr ;..: th :_’H =2 We consider two cases.

Voi4, No.L Decs ———
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(. Jf |C@ial| =0 then |C()NIu) | AM) and WHY(x,e)=3. Therofore. £
o e =LK, s IO

(ase _
{ atame 9.1, H has an acyclic k-enlouring, a contradiction.
case 2 1f |Ciz)0Ma)] =1 then WH'x,2)=(yl. fram the fact diliy) < & we have

05| < B therefore |C(x) Ca) G| < A)+3. By Lemma 8.1, wo can extend
e colouring C 1o an acyclic k-colouring of I, a contradiction.

cunPlGlIR&ﬂnN (A2) ’

It there is a » 3-verlex x in H adjacent Lo two & - vertex z and 25, then let y
pa the third neighbour of x. Moreover let H' = H-xz. Since H' has less edges than
H, xaHD = K Let € be an acyelic k«colouring of H'. We consider the following
gasas.

Case 1. |C{aINC(x}|=1. We have |Cix) Ciz) C(WH'(x,2) |2A(H)+4 and by Lemma
9.1, we can extend the colouring C to an acgyelic k-colouring of H, a contradiction,
Case 2. |C(z)NCix)|=2.

Subcase 2.1. If Cix,¥) > Cizl), then | Clz) Clz1} Cix)| < A(H)+3. Therefore we can
recalour (in H) the edge xz1 with a colour « > C{z) Ciz1) Cix), obtaining an
acvelic keolouring C" of H reducing it to the previous case.

Subcause 2.2 Cixyi € Ciz1L

Case 2.2(a). If Cixzl) > Ciy), then |Cix) Cly) Ciz)|<A(H)+3, Thus we can
recolour, in I, the cdge xy with a colour ~ > CixIC(y) C(7) to obtain an acyclic
k- colouring C' of H' and we are in the first casc.

Case 2.2(b). If Cixzl) ¢ Cly), then |C(x) Ciz) C{z1) C(y}|<A(H)+5 and, by lemma
23, we can extend the mlaurmg!;' to an acyclic k-colouring of H, a contradiction.

CONFIGURATION (A3) i

If in H, there 15 a B.vertex X |
n,thﬂnletyhethe- L
Case 1. |COONCG)| = )| = ACH) + 5 and hence,
5 Lemma 3.1, we ex e e o M a

santradiction.

“j. zI :t! ICI, 3 ﬂ.ﬂ.d

Vuold, No.1,
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Cave 2. 1CNCE)| = 2 and Cixy! » Clz) Claarly, | ClxXC(2) G{WH'{I.:I]{. <o
Tharetore, according to Lemma 9.1 and sinee A(H) = 6, H has an acyelic h-ﬂﬂhuﬁq

a contradietion.

Case 8. [O(XNC(@)| = 2 and Cixy! € C@) Assume witheut losa of generality g

Cixzl) g Clz},

Subcase 3.1 If | CxINC(z)| = 1, then we recolour the edge xy (in H') with & colgy,
o > CIx) C(¥) to obtain un acyclic k-colouring (' and we are in the previous case
Subcase 3.2 If |Cx)NCiz)) 2 2, then |Ctx) Cix) CIWH'(c2))| < A(H) = § ang, by
Lomma 3.1, we can oxtend the colouring C to an acvelie k-colouring of Eain o
contradiction.

CONFIGURATION (A4)
If H hias o T-vertex x adiovent to seven § -vertices, then let z be ona of jig

avighbours and jet H' = H-xz, Since H' has less sdges than 11, y'a(H'] < k Tt € b
an acyclic k-coluuring of I, We can observe that |Clx) Cle) ﬂ:wn'*u.;;q < 10.
Therefore, according te Lemmn 3.1 and since AMID = H has &n acyclie k-calouring,
a contradiction,

CONFIGURATTION (A5}

If none of the cases (A1)-(A4) occurs, then there must be a verlex x in H
such that at least dHix)»3 of its neighbeurs are Jvertices and ome of the, say 2,
is of degree 2. Lot us consider the graph H* = T1 —x2. Siace 1" has less edges than
H, ¢'a() = k Let € be an acyclic mhmu of H'. Let O(z) = (Cixy): v & NH(x)-
(2| and dH(y) < 3L
Case 1. If a > C1, then lﬁr}ﬂlﬂ EL‘HH'*EW?ISMH}-H Therefare, |.1 Lemma .1
H has an acyelie k-eolouring, a eun

lour (in the graph H') the edge zy
uring C' of IT' and we will fail in the
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we can now formulate fwo theorems, which pravide upper bourd on the
scyelit chromutic index for 2-fld graphs and the clase of planar graphs without

eyeles of langth three

Tﬂ_ﬂﬂﬂﬂﬂ 4.
Lat G be any 2-fold graph, Then, y'niG < M) + 6.

proof i
1t follows from Lemma 3.2 and the two known facts:

i) Any subgroup of & 2-fold graph is alse 2-fold;
tit) In any 2-fold graph G, of arder al least 2, |EIG) | <2| ViG] - 2.

THEOREM 3.2
Teét G be any planar graph without cycies of lcpgth tares, Then

(@) = MG + 6.

Proof
It is known that, |EIG)| =2 VG)| - 4 for any planar graph G without

welas of length three having order st lcast &. This can e proved using Fuler's
vemula, Clearly. this property hulds for any subgraph also. Therefore, trom
ammi, alG) <AG)+ 6

_EMMA 3.3
Let O be any geaph such that |E(GI| < 3[¥VIG)] - 1 and &(G) = 3 Then at
sast one of the following, ronfigurations occurs in G:
B1) o Sverlex adjacent ta an 11 vertex,
s g R B Y, !“11_ .J-:“-'.

B3) a F-verlex adjac

B4) a vertex % such th
i - vertices, P

Alx) - 2 of ite neighbours are

pur are § -vertices,
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(B7) o vordex x such thal ot least ix)S of i neighbours nre B svertiess nnd o

feant one of theoy & of degres 3

Frool
Lot G w (VB be suth that 50) =z B and m =3n = 1, whom |V | s p | Bl'an
First, we dofine a function T on ¥V an fellows: for sach x & V lou fly) « -zh‘n'..l'l.

. O | A i Lg
Clenrly, ‘L_r:.-- % -2, which ollows from the inequality m € 3n < |, In the nie

slen we will distribute the values of § betwoen ailjacent verticos, necording g the
bt Tulos described holow to obiain the function £,

e Ifxisan 1l- vortex, ¥ does ot give nnvihing o ils neighboury

o Ifxisa 12+ -vertex, thon x gives 1 w0 dach J-vertex in ats l1-:u.,|-|]:mm.hu“|

D4 to each 4vertex dn its peighbourhioad and Y9 Lo ench G-vertoy i ils

neighbourhoed. Now aach verex x has a now value Fix), but the sumg o

values of the fanctions £ and £, eounting over all the verticos, CeMALn the

saIng x

In the followang wao show that, if G doss nol contain any of the configurntiong

iB1-BTY, then Pix) will be ponnesative (or each x, which will lead uE 1 g

cormtrudiotion with the fict that E r 'H'IE Fixhs <2,

‘1 [
W conmder n auwmber of cases depending on the degree of x

o [fdixl =3 then Fix) = +1, L1241x) = <3 + 3 = 0, because (B1) does ot haoli

o Ifdix) = 4, then fix) = 24200 L1Jied 2 -2 4 12813 = 0, because (RO
does not hold.

e Ifdix) =5 then fix) = -1 + (13LI12 + (x) = -1 + (14313 = 0, bacause i ]
does not hald

o If6=dixi<1) then fixl=fix) =0

o If 12 < dix) = 14, then [¥x) = dix) — 6 — LI3ix) ~ (230 140x)-( 130 150x). 17 wa
assume that x has at least one u:i.g:hh-uur of degres 3, then eince (R7) dass
aot poeur, x can have at moat dix)-6 neighbours which are 5 verliees, and
hence fix) = &, If the case is that none of the neighbours of x is o Sverfex,

R e L T SR
Vold. No.l, December 2016 IRSN: 20470868 gog

el b
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P that fix) = dix)kBA231154%) > dix]B-L281(dix+-3) = 0, suee
B4l Joes nat hold.

, When dix} = 15, fixh = S10C0-(280 14 (2000 (dix18) = 0, minee (Bd) does
not hold
, Whaen doxd = 16, Fx) = 918304 2 Mix)- 151 15x], 1 we aesume that x 18
adjacent 1o 0 3-verbex, Lhen from the focs shat (BT is abeent, we can sec
that ¥ eun be sdiacent to at most dix-G vertiose of degres at most O
smplyimg Tix) = 0010 x s col adjucent o o Svertex, then Fix) = 9<4200154%)
= 942313 = (0, beeause (BE) does not bald,
o 118 = dtx) = 17, then Mx) = dixB-130cp 20010 (1811500, 1F we assume
thal X iz ndjocent o & B-vorsex, thea siace | (B7) doe: nar eccur we know
that x can be adjaccat o at m::un Wix)-h vertices of degres at most 5 and
fix} > 0, On the ather band, il x i nol adjacent bo a d-veriox Lhen Fixd =
dix -2 15 4x) = dix)6420L0dix} 1) = 0, ginee (BB) doeg nnl occur
s When dig) = 18, fixl = dix-6-13x} (275 M(x- 140180 Suppaging thel X i=
adjacent 10 & 3-vertex and since (BT dnez not oceur, ¥ can be adjneenl o
at most A% 8 verlicws nf degres ut most § and 1x) = 0, Again, if x i not
adjuctut t a Svertex then [lx) = dix) 6023L50x0 2 dx-Bualix Li2Ad) = 1
RQinee for every vertax of G the velue fix] is nomneglive, we olitain n -
enntradiction with the inegquality 12 |

LEMMA 3.4

If G is a graph such that |BUGY| £ 3|NIGY| - 1 for cach G' g G, then /
rwlG) = ZAMG) + 28,

Proof
,h i mef Iftmu ﬂ.‘i nlmu. assume Mrll is & msmmai counler
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i an acyclic k-colounng Caof H-3 We are using more than 2AH) coloipy

tharefore this colouring can be easily pxtond to an acyclic k-colouring of 1,

Hence 5H) = 3. Then, by lemma 3.9 H contains at least one of the
confipurations ! B13-(BT)

According to Lemma 3.1, it iz enough to gl
villv,u)) |« k for some edge vu and an acyelic k-colouring C ol Hovu, W, will
consider different case depending on S(H) and which of the configurations (B1).
(BT) occurs in H, As in proof of Lemma 32 we will try to find # suitable edge i

order o use Lemma 3.1 and make o contradiction with the (het that H e

wow that |Cilv) Clu) CIWH.

minimal counterexample.

CONFIGURATION (BL)
If there is a 3-vertex x, adjucent to a 11- -vertex y in H, then assume tha

2 i= another neighbour of x (m H) and let ' = H-xz. From the fact thmt H i n

minimal counterexample we see that H' has an acyclic k-celounng, say ¢
moreover, sinee di(y) < 11, we have |Clz) Cix) C(WHix,z))| = 2MH)+8. According
to Lemma 3.1, it follows that H has an acyclic k-colouring. Moreover, breayse
dH(v1), dHiy2) < 11, we have |Oz) Cix) CWH'x.z))| £ 2AHM+18, From Lemmp
11 it follows that H has an acyelie k-colouring, a contradietion.

CONFIGURATION (B2)

1f 1 contains a 4-vertex x adjacent to at least two 11° -vertices say y1, vy,
let z be any other neighbour of x (in H) and let H' = H-xz. Since H 15 4 minimal
counterexample, IT has an aeyelic k-colouring. Moreover, becansze dH(y1), dH(ys) =11,
We have |Cz) Clx) COWH(x,3))| = SAHI+18. From Lemma 3.1 it follows that 0
has an acyclic k-colouring, a contradiction.

CONFIGURATION (H3) 3

g If in H there iz a 5- veri:a}r x adjacent to at least three 11" - vertices yi, ys,
v, then let z be any other neighbour of x. Let H" = H — x2. As before, H' has an
acyclic k-colouring €. We also have dH(yl), dHiy2), dH(y3) = 11 implying |Clz)
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If Cin(01 & @, Wien det 51, 2e be naighbours of 2 in W W Clanl e 6y gy,
there 3 1 colour Cu0es) Cleg) Clpl, with which we can peeohn thie wdge o7, with
«. o chtain an acydic konlouring C of B It follows from tha Fact thae ]{-:I Citany
Crigy) Clx)| = 2AH + 4. Further, if Clam) € Oy, then there i o colour €y Oy Clay)
Cig) 1= which pan be usad to recolour the ¢dge 22 io obtain an acyelic k eolouring o
of IO Tt fellows from the Fact that |C1 Cim) Clml Clz)| = 2MED + 4. Purthar i
Cizmz) = Co. then Were is o colour CleiiOles) Clr) k=], which can be yaad o
reolons the adge zis to oblain an acylie k-colounng C° of H'. Ln each Fituating

we are back in the provieus ¢ase,

THEOREM 3.3
I G s planar, thea () < 2MG) + 29

Proof

It 12 a knuwon fact that for any placar graph (3, |Biz)| <3 .\"H:t'll 8, Nobe
that thia prupeety alsn holds for any subgraph. Theretore we can apply Lemms 8 ¢ i,
pet the requarad meaull

THEUOREM 3.4
G is 3fold, thew ¥alG) = 280G - 20

Proof

If G is 3-fold. (hen G is the union of Uires forcsls and thus |G = 3[ViG)| - ¢
Cbwiously, this property also holds fir any subgreph. Therefore, by Lomuma 3.4,
£alll) = 2MG1+29.

CONCLUSION

Here we have made uvse of the discharging method to get some loey)
“tructiure for graphs with bounded number of edges like plansr graphs and 2 fald
praphs, Thia was farther used W improve the bounds for the acyclic chromagie
irdex. It wight be interesting tn lopk at other elasses of graphs where the numbor
of edges is lincar. It is also interesting to ser il the gap betwoen lawer and upper
bound for planar graphs ean be reduced.
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