
 International Journal of Contemporary Research in Computer Science and Technology (IJCRCST) e-ISSN: 2395-5325
Volume 5, Issue 1 (March ’2019)

 IJCRCST © 2019 | All Rights Reserved www.ijcrcst.com

 7

THE ROLE OF MATHEMATICS IN COMPUTER SCIENCE COLLEGE
EDUCATION

K. Renuga Devi,
 Assistant Professor,

 Department of Mathematics,
Jayaraj Annapackiam College for Women (Autonomous),

Periyakulam. Theni(Dt),Tamilnadu.

D. Abinaya,
Assistant Professor,

 Department of Mathematics,
 Jayaraj Annapackiam College for Women (Autonomous),

Periyakulam, Theni(Dt),Tamilnadu.

B. Amalajasmine,
Assistant Professor,

Department of Mathematics,
Jayaraj Annapackiam College for Women (Autonomous),

Periyakulam, Theni(Dt),Tamilnadu.

Abstract: Nowadays mathematics is an important foundation for many science disciplines. Similarly, discrete
mathematics and logic are foundations for computer based disciplines such as computer science. However, these
essential foundations are often taught independently and relevant connections to computing, required to motivate
the mathematics, are usually not made. Mathematics is a natural complementary discipline for learning,
understanding and appreciating many fundamental computer science concepts. Accordingly, for the students
benefit, foundational mathematics should be introduced early and integrated throughout the curriculum. This paper
provides motivation, specific and general guidelines, curriculum structures and a representative first course for
significantly enhancing the mathematical reasoning skills of computer science graduates. Over twenty years teaching
foundational computing, talking to and surveying students, alumni, educators and corporate people have convinced
the author that graduates of mathematically oriented programs will be better general problem solvers and software
developer.
Keywords: Mathematics and Computer Science Education, software developers, Computer scientists

I.INTRODUCTION
Scientific and engineering disciplines generally are closely

coupled to mathematics. The natural sciences make

mathematical models of the phenomena they study; both the

natural and social sciences rely on statistics to tease meaning

out of raw data; engineers depend on mathematical models at
all stages of system design, construction, and maintenance.

The one pair of exceptions to this rule appears to be computer

science and software engineering.

Practicing software developers make little use of mathematics

[20, 31], and conventional wisdom says the same of computer

science students. Yet it would be very strange if the

relationship between computer science, software engineering,

and mathematics were really as loose as it seems. At the very

least it would be suspicious for computer science and

software engineering to be the only non-mathematical

members of the science and engineering family; at the worst
it would be downright dangerous for the disciplines to reject

methods that characterize the fields whose names they use.

This paper argues that, although the day-to-day practice of

computing often requires little if any mathematics, there are

nonetheless important connections between computer science,

software engineering, and mathematics. The next section

discusses the roles mathematics plays in computer science,

including how specific mathematical topics interact with

specific computer science topics, and how mathematical

reasoning complements computer science reasoning. The

third section explores the role mathematics plays in computer

science education and analyzes the disparity between its role

in the general discipline and its role in education. A brief

conclusion then summarizes the main points and their

implications for computer science curricula. Although the rest

of the paper focuses on “computer science,” we use the term

generically rather than to identify a single precise discipline:

our ultimate concern is with the education of computing

professionals, most of whom still receive that education

through a program that identifies itself as “computer science.”

Our argument and conclusions apply to software engineering

as well as to computer science.

Computer scientists use math in their professional lives in

several ways. First, mathematics provides the theoretical

basis for many subfields of computer science, and important

analytic tools for others; computer scientists thus apply

specific mathematical topics to specific computing problems.

More generally, mathematics provides a framework for

reasoning about computing and computing problems, and

even more broadly, provides a mental discipline for solving

those problems. Specific Mathematical Topics It is

reasonably easy to identify individual pieces of mathematics

that find use in specific areas of computing (e.g., “Boolean
algebra can be used to manipulate conditional expressions”).

What is hard is identifying an appropriate level of detail at

which to analyze computing’s uses of mathematics, and

imposing some standard of completeness on that analysis.

Note that we excluded the “general and reference” category

from our analysis as orthogonal to that analysis, and

 International Journal of Contemporary Research in Computer Science and Technology (IJCRCST) e-ISSN: 2395-5325
Volume 5, Issue 1 (March ’2019)

 IJCRCST © 2019 | All Rights Reserved www.ijcrcst.com

 8

“mathematics of computing” because our goal was essentially

to match its elements to the other categories. The value of this

approach is that it brings some objectivity to the process of

aligning mathematics and computer science; the price of that

objectivity is that everyone will no doubt see ways in which

the alignment differs from their personal perceptions. We

offer the approach as a first step in developing a
comprehensive understanding of what math is important for

computer science, but certainly don’t expect our analysis to

be the last word on the subject.

Certain computing topics also have much higher connectivity

than others. Not surprisingly, “theory of computation,” which

includes mathematical models of computation plus analysis

of algorithms, is connected to many mathematical topics. The

high connectivity of “computing methodologies” is perhaps
more surprising - it is due to the category being a broad one

that contains many subtopics. Further comments seem

appropriate for the “domain mathematics” topic linked to

“applied computing.” All applied computing is in some

domain that has its own mathematical tools or foundations,

and at some level the people involved in any applied

computing project have to understand that mat hematics.

Figure.1.1. Applied computer science

Figure 1.1 showed that the importance of mathematics in

computing field. Mathematics and Reasoning Many activities

within computing require practitioners to analyze problems

and potential solutions logically and carefully - often

applying tools and techniques from mathematics. For

example,

 Whenever problems are put forward or solutions

proposed, users should ask what assumptions are being

made and how those assumptions might impact any

results obtained or program behaviors.

 When an algorithm is proposed as a solution to a

problem, developers and researchers must determine

whether the algorithm is correct and uses resources
efficiently.

 When programs are put forward as implementations of

algorithms, testing organizations and users may formally

as well as empirically verify that the software behaves

according to identified specifications. (Instances of

required formal verification do exist - for example

electronic gambling devices are subject to

mathematically defined fairness requirements in some

jurisdictions [22]; one of the authors recently saw a

position announcement from a gaming company seeking

someone to “create, test, and analyze new games” but

also to “compose ... mathematical proofs for game

submissions to ... regulators” [27].)

 When several potential solutions are suggested for a

problem, practitioners should be able to analyze the
relative advantages and disadvantages of those solutions

under varying assumptions. Bruce [5] provides several

specific examples of mathematical reasoning in these and

other computing activities. The bottom line is that

computing professionals need to reason logically - not

just in hypothetical or classroom settings, but in real

research and development projects. More abstractly,

there are close connections between problem solving in

computer science and in mathematics. Devlin [9]

observes that computer science is a mass of abstractions

built on other abstractions, and that mathematics is the
age-old language and practice of abstraction. Ralston

[24] argues that even if computing professionals seldom

use math explicitly, the logical thinking central to

mathematics is also central to computing. In her widely

cited “computational thinking” paper [35], Jeannette

Wing develops this idea in depth. She credits computer

science with a distinctively powerful approach to

problem solving, which, among other defining

characteristics, “complements and combines

mathematical and engineering thinking.” The term

“computational thinking” is broadly defined in her paper,

and has since been applied by other authors to almost any
thought process remotely associated with [P]eople who

create new algorithms or designs need some ability to

independently apply mathematical techniques, and at the

high-math end of the spectrum, those who conduct

research in an area need a deep ability to work with its

mathematics.

II.MATHEMATICS AND REASONING
Many activities within computing require practitioners to

analyze problems and potential solutions logically and

carefully - often applying tools and techniques from

mathematics. For example, verification do exist - for example

electronic gambling devices are subject to mathematically

defined fairness requirements in some jurisdiction one of the

authors recently saw a position announcement from a gaming
company seeking someone to “create, test, and analyze new

games” but also to “compose ... mathematical proofs for

game submissions to ... regulators”.)
■ When several potential solutions are suggested for a

problem, practitioners should be able to analyze the

relative advantages and disadvantages of those

solutions under varying assumptions.

III.MATHEMATICS’ ROLE IN

COMPUTER SCIENCE EDUCATION
As seen in the previous section, the relationship between

math- ematics and computer science has two faces: many

software engi- neers perform well without relying on

mathematics, while at the same time there are rich

connections between the fields that can be exploited by those

prepared to do so. How then does, and should, mathematics
fit into undergraduate computer science curricula?

 International Journal of Contemporary Research in Computer Science and Technology (IJCRCST) e-ISSN: 2395-5325
Volume 5, Issue 1 (March ’2019)

 IJCRCST © 2019 | All Rights Reserved www.ijcrcst.com

 9

THE CURRENT STATE OF MATHEMATICS IN

COMPUTER SCIENCE CURRICULAM

As an indication of what strong undergraduate computer

science programs around the world consider appropriate

mathematics content, we examined the mathematics
requirements of 25 of the first 26 in all the college in tamil

nadu. We emphasize that this is not a statistically rigorous

study of what “typical” computer science undergraduates

experience, but rather an effort to get an international

selection of high-quality programs that can provide a general

sense of how math is integrated into computer science

education. However, the amount of math in the high-quality

programs is consistent with the amount of math required in

NAAC-accredited India computer science programs surveyed

in the late 1990s [21], and our personal experiences suggest

that observations about the high quality programs also apply
to other programs.

Table 1 provides a summary of how many programs

require what sorts of math. The table shows a slight

inconsistency between mathematics requirements and the

actual connections between math and computer science from

Figure 1. Almost all the programs require students to study

discrete mathematics, which is appropriate as it includes

much of the foundational mathematics for computer science

(e.g., logic, some proof methods, set theory, etc.). Three

programs, however, do not require this foundation.

Furthermore, probability and statistics is the least commonly

required of the topics we looked for, despite its heavy use in
computer science. Operation research, which has relatively

used in computer science, is required almost as often as

discrete mathematics, CONM (computer oriented numeric

methods and Optimization techniques are widely used in

computer science.

TABLE 1. MATHEMATICS REQUIREMENTS OF 25

HIGH- QUALITY COMPUTER SCIENCE

PROGRAMS.

Topic Number of Programs

Requiring

Discrete Math 25

CONM 20

Optimization
techniques

21

The number of mathematics courses required by the programs
varies greatly, from a minimum of 1 to a maximum of 8, with

a mode of 5. Figure 2 shows the complete distribution.

Programs at the higher end of the distribution often require

multiple courses in calculus, linear algebra, and/or differential

equations. Very few programs require more than one course

in discrete mathematics or in probability and statistics. High

numbers of required math courses therefore do not indicate

extensive study of the mathematics central to computer

science.

Figure 2: Core curriculam of computer science.

Figure. 2. Shows that 75% of the curriculum of

computer science occupy by the mathematics subjects.
In every computing subjects must have the mathematics

to analyze the data. The prominence of calculus in

computer science programs is puzzling. Some amount

of calculus can be explained by the fact that one or two

calculus courses are a prerequisite for other mathematics

in most schools. However, many programs also require

multivariable calculus, differential equations, etc., far

exceeding what is plausibly necessary to study the

mathematics more central to computer science. This

amount of calculus may be due to programs be- ing

housed in schools of engineering, or being historically
derived from engineering programs, which traditionally

require substantial amounts of calculus.

IV.DIFFICULTY FACED BY

COMPUTER SCIENCE STUDENTS
Computer science programs require students to take a

reasonable number of mathematics courses, but much of

that mathematics is of limited relevance to computer

science as a whole. The remaining mathematics is, on
balance, under-utilized in the computer science. Within

a learning environment, understanding typically starts at

the beginning levels of Bloom’s taxonomy—knowledge

of specifics (e.g., jargon, truth tables, formal rules of

logic), comprehension (e.g., paraphrasing formal rules),

and simple applications. Computer science, whether in

its mathematical aspects or not, is no exception. Such

foundational work is needed as a base for reasoning

about algorithms, programs, systems, etc. However, this

elementary level of reasoning and understanding is

insufficient for actually using computer science in the
real world. Students must learn much more than the

mechanical application of routine steps. Such learning

happens when later courses build upon the foundation

laid by introductory ones and provide practice at deeper

levels of analysis in both structured and open-ended

settings. Although such analysis may not be part of

every discussion of every topic in upper-level courses,

students need to experience it repeatedly and in multiple

contexts. When undergraduate computer science pro-

grams fail to do this with the mathematics they require,

they limit graduates’ ability to use mathematics in either

subsequent study or employment.

 International Journal of Contemporary Research in Computer Science and Technology (IJCRCST) e-ISSN: 2395-5325
Volume 5, Issue 1 (March ’2019)

 IJCRCST © 2019 | All Rights Reserved www.ijcrcst.com

 10

 Formal methods are slowly gaining traction in the software

industry; of particular note, programming for concurrency is

sweeping through the industry, and automatic model

checking is an increasingly vital tool for coping with the

subtle timing and synchronization bugs that concurrency

brings [18, 8]. While there is ample need for programmers

who can write code to given specifications, the more senior
developers who pro- duce those specifications often need

facility with the mathematics of the application domain [30].

Undergraduates who continue to graduate school,

particularly at the doctoral level, will find them- selves in a

world of mathematical sophistication unimaginable from the

undergraduate perspective - the most pronounced ex- ample

is probably the study of programming language theory as a

non-mathematical descriptive activity in undergraduate texts

such as [26], but as an entirely mathematical exercise in

modeling language semantics in such graduate texts as [33].

V.CONCLUSION
Computer science, like the physical sciences and traditional

science fields, widely uses mathematics to model the
phenomena it studies. Furthermore, computational and

mathematical reasoning are closely connected. Yet,

paradoxically, many computer science graduates function

quite well as professionals without consciously applying

mathematics to their work. This paradox leads mathematics

to sit uncomfortably in undergraduate computer science

curricula while most such curricula include appropriate

mathematics, they often also include much mathematics that

is not strongly connected to computing, and while they teach

some applications of math to computing, they often overlook

others. This uncomfortable treatment of mathematics in
computer science education has been surprisingly resistant to

correction, for a surprisingly long time. While the precise

reasons differ from institution to institution, we believe that

the overarching one is that computer science faculty simply

do not see the problem as urgent. And indeed, as long as

computer science graduates find jobs or places in graduate

schools in the field, and the field itself is growing, the

problem does seem minor.

VI.REFERENCE
[1]. Aho, A. V. and Ullman, J. D. Foundations of Computer

Science. (New York: Computer Science Press, 1992).

[2]. Baldwin, D. and Henderson, P. B. “A working group on

integrating mathematical reasoning into computer

science curricula.” http://www.math-in-cs.org/.

Accessed 2013 April 30.

[3]. Baldwin, D. and Scragg, G. Algorithms and Data

Structures: The Science of Computing. (Hingham,
Massachusetts: Charles River Media, 2004).

[4]. Bloom, B. Taxonomy of Educational Objectives:

Handbook 1: Cognitive Domain. (Longmans, Green and

Company, 1956): 201-207.

[5]. Bruce, K. et al. “Why math?” Communications of the

ACM, 46, 9 (2003): 41- 44.

[6]. Cohoon, J. P. and Knight, J. C. “Connecting discrete

mathematics and software engineering” in Proceedings

of the Thirty-Sixth ASEE/IEEE Frontiers in Education

Conference. (New York: IEEE, 2006): M2F-13 - M2F-

18.

[7]. Cormen, T. et al. Introduction to Algorithms. 3rd ed.

(Cambridge, Massachusetts: MIT Press, 2009).

[8]. IEEE Computer Society, “TechLeader OnCourse.”

[9]. http://www.computer.org/portal/web/certifi- cation.

Accessed 2013 April 30.

[10]. IEEE Computer Society and Association for Computing

Machinery Interim Review Task Force. “Computer
Science Curriculum 2008: An Interim Revision of CS

2001.” http://www.acm.org/

education/curricula/ComputerScience2008.pdf.

Accessed 2013 June 27.

[11]. IEEE Computer Society and Association for Computing

Machinery Joint Task Force on Computing Curricula.

“Computing Curricula 2001: Computer Science,”

http://www.acm.org/

education/education/education/curric_vols/cc2001.pdf.

Accessed 2013 April 30.

[12]. Jhala, R. and Majumdar, R. “Software model checking.”
ACM Computing Surveys 41, 4 (2009). doi:

10.1145/1592434.1592438.

[13]. Kedem, Z. et al. eds. “The 2012 ACM Computing

Classification System.” http://www.acm.

org/about/class/2012. Accessed 2013 April 20.

[14]. Lethbridge, T. “Priorities for the education and training

of software engineers.” Journal of Systems and

Software, (2000): 53-71.

[15]. McCauley, R. and Manaris, B. “Computer science

education at the start of the 21st century—a survey of

accredited programs.” in Proceedings of the Thirty-

Second ASEE/IEEE Frontiers in Education Conference.
(New York: IEEE, 2002): F2G-10 - F2G-15.

[16]. Nevada State Gaming Control Board Gaming

Commission. “Regulation 14.” http://gaming.

nv.gov/modules/showdocument.aspx?documentid=2921

. Accessed 2013 July 17.

[17]. Ralston, A. “The first course in computer science needs

a mathematics corequisite.”Communications of the

ACM, 27, 10 (1984): 1002-1005.

[18]. Ralston, A. “Do we need ANY mathematics in

computer science curricula?” inroads—the SIGCSE

Bulletin, 37, 2 (2005): 6-9.
[19]. Sahami, M. “A course on probability theory for

computer scientists.” in Proceedings of SIGCSE 2011,

the Forty-Second Technical Symposium on Computer

Science Education (New York: ACM, 2011): 263-268

http://www.math-in-cs.org/
http://www.math-in-cs.org/
http://www.computer.org/portal/web/certifi-
http://www.acm.org/
http://www.acm.org/
http://gaming/

