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1. Introduction

tinuous

In a topological space a weaker form of open sets called pre-open sets were
| introduced by Mashhour et al. [6] in 1982. These open sets are used to define a

' new class of open sets, y-open sets by Andrijevic [1] in 1987. The family of all the

)7, y-open sets in a topological space is a topology in the same space. In 2004
separation axioms based on the y-open sets were studied by Navalagi et al. [7].
Ekici [2] used y-open sets to define a new class of spaces called ¥-US spaces.

The concept of bitopological space was introduced by Kelly [3] in 1963. A
new class of sets called (1,2)a-open sets was defined by Lellis Thivagar [4] in
1991. Lellis Thivagar et al. [5] introduced (1,2) semi-open set and (1,2) pre-open

g|set in a bitopological space and the notion of (1,2) pre-continuous function was
§ introduced by Lellis Thivagar et al. [5]. In this paper, the (1,2)y-open set is defined as
/40 extension of y-open sets in bitopological spaces and (1,2)y-continuous function
is introduced.

2, Preliminaries
Definition 2.1

A subset A of a topological space X is called pre-open [6] if A < int (cl(A)).

—

{The complement of a pre-open set is defined to be pre-closed. The family of all
pre-open sets of X is defined by PO(X).

Vol.3, No.1, December 2015 ISSN: 2347-9868 57



JAC JOURNAL OF SCIENCE, HUMANITIES AND MANAG

—
Definition 2.2
A subset A of the topologicnl space X is called y-open (1] f A S 18 pr

open, for all 8 ¢ PO(X). The complement of y-open set is y-closed
Definition 2.3

[f 11 and 2 are two topologies on a non-empty set X, then the triple O 1, o
18 called a bitopological space [3).

Definition 2.4
A subset A of a bitopological space X is called, I

(1) Titz-open [4] f A € 11U T2,

(11) Titz-closed [4] if At € T W T2 |
Remark 2.5

(1) The union of all titz2-open sets of X contained in A is called the titz-interior o

A and 1s denoted by t1t2-int(A).
(i1) The intersection of all titz-closed sets of X containing A is called r:tz-cloaun.

of A and is denoted by tit2-cl(A).

Definition 2.6
A subset A of X is called (1,2) pre-open [5] if A < t1-int(t1t2-¢cl(A)) and (1.2

pre-closed if its complement in X is (1,2) pre-open or equivalently, ti-cl(tit2(A)) = A

Notation 2.7
(i) The family of all (1,2) pre-open sets of X is denoted by (1,2) PO(X).

(ii) (1,2) pre-closure of A denoted by (1,2) pre-cl(A) is the intersection of all (12

pre-closed sets containing A.

Remark 2.8
A subset A of X is (1,2) pre-closed [5] if and only if (1,2) pre-cl(A) = A. ‘

Throughout this paper, by X and Y we mean bitopological spaces (X, ©1, ®

and (Y, o1, 02) respectively.

W
3
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Delinition 2.9
A funet . :
won f: X < Y ia (1,2) pre-continuous [6] i f (V) is (1,2) pre-open set

in X for each o0y open set Vol Y

e

3. (1. 2)y-open sets
In this section we define (1,2)y-opon sets in a bitopological space X I

-

Definition 3.1
A subset A of the bitopological space X is called (1,2)yy-open if A 1 S is (1,2)

pre-open, for all S e (1,2)PO(X).
The complement of (1,2)y-oper
open sets of X is denoted by (1,2)yO(X).

1 set is (1,2)7-closed. The family of all (1,2)y-

Example 3.2
Let X = {a, b, ¢, d}; 11 = {$, {a, ¢}, X} and 1z = {¢, {b, d}, X}.

Then (1,2)y0(X) = {¢, {a}, {c}, {a, ¢}, {a, b, cHa, ¢, d}, X}.

Remark 3.3
A subset A of X is (1,2)y-closed if and only if (1,2)ycl(A) = A.

Remark 3.4
is (1,2) pre-open set. But the converse need not be

Every (1,2)y-open set
en but not (1,2)y-open.

true, in general. In Example 3.2, {a, b} 18 (1,2) pre-op

Definition 3.5
A set U in x

if U contains a (1,2)

a bitopological space X is a (1,2)y-neighborhood of a point X €
y-open set V such thatx e Vc U.

Definition 3.6
The union of all (1,2)y-open subsets of X

Let A be a subset of a space X.
contained in A is called (1,2)y-interior of A and is denoted by (1,2)y-int(A).
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Definition 3.7

(1.2)yclosure of A denoted by (1,2ycl(A) 15 the intersection of all

closed sets containing A
ar
Theorem 3.8 -
For a subsoet A of a space X, the following are true w
(1) (1L,2)y-int(A) 1s a (1,2)y-open set, '.l‘
() (1L,2)y-int(A) 18 the largest (1,2)y-0pen set contained in A “
(1) Aas (1,2)y-open if and only if (1,2)y-int(A) = A ::
Theorem 3.9 4
Let A and B be two subsets of a space X, the following are true
(1) (1, 2)y-int(d) = ¢. !
(1) (1,2)y-int(X) = X.
(1) A < B = (1,2)y-int(A) < (1,2)y-int(B). 1
(iv) (1,2)y-int(A) U (1,2)y-int(B) (1,2)y-int(A U B).
(v) (1,2)y-int(A n B) = (1,2)y-int(A) mn (1,2)y-int(B). ‘

(vi) (1,2)y-int((1,2)y)-int(A)) = (1,2)y-int(A).

Theorem 3.10

Let A be a subset of a space X. Then x € (1,2)y-cl(A) if and only if every
(1,2)y-open set U containing x intersects A.

Proof

It needs to prove x ¢ (1,2)y-cl(A) if and only if there exists a (1,2)y-open se
U containing x such that U does not intersect A. If x 18 not an element of in (1,2n
cl(A), the set.
U =X(1, 2)y-cl(A) is a (1,2)y-open set containing x that does not intersect A
Conversely, if there exist a (1,2)y-open set U containing x which does nd
intersect A, then X\U is a (1,2)y-closed set containing A. Since (1,2)y-cl(A) is the

smallest closed set containing A then (1,2)y-cl(A) = X\U. Therefore, x cannot b
in (1,2)y-cl(A).
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i are true.

@ (L2)y-cl(¢) = ¢.
1) A< (1L,2)y-cl(A).
(i) A < B = (1,2)y-cl(A) ¢ (1,2)y-cl(B).
(iv) (L,2)y-cl(A U B) = (1,2)y-cl(A) U (1,2)y-cl(B).
(v) (1L, 2)y-cl(A N B) = (1,2)y-cl(A) (L, 2)y-cl(B).
| (v) (L, 2)y-cl(1,2)y-cl(A) = (1,2)y-cl(A).
| 4. (1,2)y-Continuous Funetions
In this section the topological concept continuity is extended to a

i bitopological space using (1,2)y-open sets.

Definition 4.1
A function f :

X = Y is (1,2)y-continuous if f1(V) is (1,2)1-open set in X for

each o162-open in Y.

Example 4.2
let X ={a, b, ¢, d}; © = {p, ta}, {c}, fa, c}, b, ¢}, fa, b, ¢}, fa, ¢, d}, X} and

=19, b}, {d}, b, d}, {a, d}, {b, ¢, d}, {a, b, d}, X}. Let Y = P, q, r}; o1 = {9, {p}, YV}
Y| and o2 = {¢, {q}, Y}. Define a function f: X —» Y by f(a) = p, f(c) = q, f(b) = f(d) = r.

| Then fis (1,2)y-continuous.
[
Remark 4.3
Every (1,2)y-continuous function is (1,2) pre-continuous..

Theorem 4.4
Let f: X — Y be a function. Then the following are equivalent.

——

(1) fis (1,2)y-continuous.
() The inverse image of each ci02-closed set in Y is (1,2)y-closed in X.

(1) (1,2)y-cl[f(V)] < fV[o152-c1(V)], for every Vc Y.
(v) fI(1,2)y-cl(U)] < c102-cl[f(U)], for every U c X.

R R EEEEE————
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Proof ;;‘S
(1) = (iD) Let F ¢ Y be a oioz-closed set. Since f: X—>Yisa {1.2)1‘,'-'.:'-'"*1'6'lt'uu.-;mIi p
_f'(F) and this set is (1,2)y-open. Therefore, f1(I') is (I.er.dm

!

FIY —F]=X

n X,

(ii) => (iii) Since ci02-cl(V) is o102-closed for every V < Y, f-b[oro2-cl(V)] is (1,2,
closed.

Therefore, f:V[c10e-cl(V) = (1,2)y-cl[f X (o102-cl(V))] = (1,2)¢-cl[f1(V)].

(iii) = (iv) Let U < X and f(U) = V. Then f*Y[c102-cl(V)] o (1,2)y-cl[£1(V)].

Thus f!(cio2-cl(f(U)) o (1,2)y-cl[£1((U))] = £I(1,2)y-cl(T)].

(iv) = (ii) Let W < Y be a cioz2-closed set, U = f1(W), then f[(1,2)y-cl(U)] < oy
cl[f(U)] = fLV[f(1,2)y-cl[f(f1(W))] = o102-cl(W) = W.

Thus (1,2)y-cl(U) < fO[f((1,2)y-cl(U))] < f2(W) = U. So U is (1,2)y-closed.

(ii) = (i) Let V< Y be a o10:-open set, then Y — V is c1o2-closed.
Then f1(Y — V) = X — f1(V) is (1,2)y-closed in X and hence £1(V) is (1,2)y-open in

Remark 4.5 ‘
If f: X = Y is a function, and one of the following holds, then f is (1

continuous.

() FO[(1,2)y-int(B)] < (1,2)-int(B)] < (1,2)y-int[f1(B)] for each B = Y.
(i1) (1,2)y-cl[fr2(B)] < £V[(1,2)y-cl(B)] for each Bc Y.

(i11) f1(1,2)y-cl(A)] < (1,2)y-cl[f(A)] for each A < X.
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