ENT

um

ON $(1,2)\gamma$ - OPEN SETS

R. Karpagam and S. Athisaya Ponmani

PG and Research Centre of Mathematics, Jayaraj Annapackiam College for Women (Autonomous), Periyakulum, Theni Dist, Tamil Nadu, India

Abstract

ical

The aim of the paper is to introduce $(1,2)\gamma$ -open sets and $(1,2)\gamma$ -continuous function in a bitopological space.

AMS Subject Classification: 54C55

Keywords: (1,2) pre-open, (1,2)PO(X), (1,2) γ -open, (1,2) γ O(X), (1,2) pre-continuous, (1,2) γ -continuous.

1. Introduction

In a topological space a weaker form of open sets called pre-open sets were introduced by Mashhour et al. [6] in 1982. These open sets are used to define a new class of open sets, γ-open sets by Andrijevic [1] in 1987. The family of all the 197, γ-open sets in a topological space is a topology in the same space. In 2004, separation axioms based on the γ-open sets were studied by Navalagi et al. [7]. Ekici [2] used γ-open sets to define a new class of spaces called γ-US spaces.

The concept of bitopological space was introduced by Kelly [3] in 1963. A new class of sets called $(1,2)\alpha$ -open sets was defined by Lellis Thivagar [4] in 1991. Lellis Thivagar et al. [5] introduced (1,2) semi-open set and (1,2) pre-open set in a bitopological space and the notion of (1,2) pre-continuous function was introduced by Lellis Thivagar et al. [5]. In this paper, the $(1,2)\gamma$ -open set is defined as an extension of γ -open sets in bitopological spaces and $(1,2)\gamma$ -continuous function is introduced.

2. Preliminaries

Definition 2.1

A subset A of a topological space X is called pre-open [6] if $A \subset \text{int } (cl(A))$. The complement of a pre-open set is defined to be pre-closed. The family of all pre-open sets of X is defined by PO(X).

Definition 2.2

A subset A of the topological space X is called γ -open [1] if A \cap S is presopen, for all S \in PO(X). The complement of γ -open set is γ -closed.

Definition 2.3

If τ_1 and τ_2 are two topologies on a non-empty set X, then the triple (X, τ_1 , τ_{ij} is called a bitopological space [3].

Definition 2.4

A subset A of a bitopological space X is called,

- (i) $\tau_1\tau_2$ -open [4] if $A \in \tau_1 \cup \tau_2$.
- (ii) $\tau_1\tau_2$ -closed [4] if $A^c \in \tau_1 \cup \tau_2$.

Remark 2.5

- (i) The union of all τ₁τ₂-open sets of X contained in A is called the τ₁τ₂-interior of A and is denoted by τ₁τ₂-int(A).
- (ii) The intersection of all τ₁τ₂-closed sets of X containing A is called τ₁τ₂-closure
 of A and is denoted by τ₁τ₂-cl(A).

Definition 2.6

A subset A of X is called (1,2) pre-open [5] if $A \subset \tau_1$ -int $(\tau_1\tau_2$ -cl(A)) and (1,2) pre-closed if its complement in X is (1,2) pre-open or equivalently, τ_1 -cl $(\tau_1\tau_2(A)) \subset A$.

Notation 2.7

- (i) The family of all (1,2) pre-open sets of X is denoted by (1,2) PO(X).
- (ii) (1,2) pre-closure of A denoted by (1,2) pre-cl(A) is the intersection of all (1,2) pre-closed sets containing A.

Remark 2.8

A subset A of X is (1,2) pre-closed [5] if and only if (1,2) pre-cl(A) = A. Throughout this paper, by X and Y we mean bitopological spaces (X, τ_1 , and (Y, σ_1 , σ_2) respectively.

Definition 2.9

A function $f: X \to Y$ is (1,2) pre-continuous [5] if $f^1(V)$ is (1,2) pre-open set in X for each σ₁σ₂-open set V of Y.

3. $(1,2)\gamma$ -open sets

In this section we define (1,2)y-open sets in a bitopological space X.

Definition 3.1

A subset A of the bitopological space X is called $(1,2)\gamma$ -open if A \cap S is (1,2)pre-open, for all $S \in (1,2)PO(X)$.

The complement of (1,2)y-open set is (1,2)y-closed. The family of all (1,2)yopen sets of X is denoted by $(1,2)\gamma O(X)$.

Example 3.2

Let $X = \{a, b, c, d\}$; $\tau_1 = \{\phi, \{a, c\}, X\}$ and $\tau_2 = \{\phi, \{b, d\}, X\}$. Then $(1,2)\gamma O(X) = \{\phi, \{a\}, \{c\}, \{a, c\}, \{a, b, c\}\{a, c, d\}, X\}.$

Remark 3.3

A subset A of X is $(1,2)\gamma$ -closed if and only if $(1,2)\gamma cl(A) = A$.

Remark 3.4

Every (1,2)γ-open set is (1,2) pre-open set. But the converse need not be true, in general. In Example 3.2, {a, b} is (1,2) pre-open but not (1,2)γ-open.

Definition 3.5

A set U in a bitopological space X is a $(1,2)\gamma$ -neighborhood of a point $x \in X$ if U contains a $(1,2)\gamma$ -open set V such that $x \in V \subset U$.

Definition 3.6

Let A be a subset of a space X. The union of all (1,2)γ-open subsets of X contained in A is called (1,2)y-interior of A and is denoted by (1,2)y-int(A).

Definition 3.7

(1,2)γ-closure of A denoted by (1,2)γcl(A) is the intersection of all (1,2) closed sets containing A.

Theorem 3.8

For a subset A of a space X, the following are true.

- (i) (1,2)γ-int(A) is a (1,2)γ-open set.
- (ii) (1,2)γ-int(A) is the largest (1,2)γ-open set contained in A.
- (iii) A is $(1,2)\gamma$ -open if and only if $(1,2)\gamma$ -int(A) = A.

Theorem 3.9

Let A and B be two subsets of a space X, the following are true.

- (i) $(1,2)\gamma \operatorname{int}(\phi) = \phi$.
- (ii) $(1,2)\gamma int(X) = X$.
- (iii) $A \subset B \Rightarrow (1,2)\gamma \cdot int(A) \subset (1,2)\gamma \cdot int(B)$.
- (iv) $(1,2)\gamma$ -int(A) \cup $(1,2)\gamma$ -int(B) \subseteq $(1,2)\gamma$ -int(A \cup B).
- (v) $(1,2)\gamma$ -int(A \cap B) = $(1,2)\gamma$ -int(A) \cap $(1,2)\gamma$ -int(B).
- (vi) $(1,2)\gamma int((1,2)\gamma) int(A)) = (1,2)\gamma int(A)$.

Theorem 3.10

Let A be a subset of a space X. Then $x \in (1,2)\gamma\text{-cl}(A)$ if and only if every $(1,2)\gamma\text{-open}$ set U containing x intersects A.

Proof

It needs to prove $x \notin (1,2)\gamma$ -cl(A) if and only if there exists a $(1,2)\gamma$ -open set U containing x such that U does not intersect A. If x is not an element of in $(1,2)\gamma$ -cl(A), the set.

 $U = X(1, 2)\gamma$ -cl(A) is a $(1,2)\gamma$ -open set containing x that does not intersect A.

Conversely, if there exist a $(1,2)\gamma$ -open set U containing x which does not intersect A, then X\U is a $(1,2)\gamma$ -closed set containing A. Since $(1,2)\gamma$ -cl(A) is the smallest closed set containing A then $(1,2)\gamma$ -cl(A) \subset X\U. Therefore, x cannot be in $(1,2)\gamma$ -cl(A).

Theorem 3.11

1,2)

Let X be a bitopological space and A,B are two subsets of X. Then the following are true.

- (i) $(1,2)\gamma cl(\phi) = \phi$.
- (ii) $A \subset (1,2)\gamma\text{-cl}(A)$.
- (iii) $A \subset B \Rightarrow (1,2)\gamma\text{-cl}(A) \subset (1,2)\gamma\text{-cl}(B)$.
- (iv) $(1,2)\gamma$ -cl(A \cup B) = $(1,2)\gamma$ -cl(A) \cup $(1,2)\gamma$ -cl(B).
- (v) $(1,2)\gamma$ -cl(A \cap B) = $(1,2)\gamma$ -cl(A) \cap $(1,2)\gamma$ -cl(B).
- (vi) $(1,2)\gamma cl(1,2)\gamma cl(A) = (1,2)\gamma cl(A)$.

4. (1,2)γ-Continuous Functions

In this section the topological concept continuity is extended to a bitopological space using $(1,2)\gamma$ -open sets.

Definition 4.1

A function $f: X \to Y$ is $(1,2)\gamma$ -continuous if $f^1(V)$ is $(1,2)\gamma$ -open set in X for each $\sigma_1\sigma_2$ -open in Y.

Example 4.2

Let $X = \{a, b, c, d\}$; $\tau_1 = \{\phi, \{a\}, \{c\}, \{a, c\}, \{b, c\}, \{a, b, c\}, \{a, c, d\}, X\}$ and $\tau_2 = \{\phi, \{b\}, \{d\}, \{b, d\}, \{a, d\}, \{b, c, d\}, \{a, b, d\}, X\}$. Let $Y = \{p, q, r\}$; $\sigma_1 = \{\phi, \{p\}, Y\}$ and $\sigma_2 = \{\phi, \{q\}, Y\}$. Define a function $f: X \to Y$ by f(a) = p, f(c) = q, f(b) = f(d) = r. Then f is $(1,2)\gamma$ -continuous.

Remark 4.3

Every (1,2)γ-continuous function is (1,2) pre-continuous.

Theorem 4.4

Let $f: X \to Y$ be a function. Then the following are equivalent.

- (i) f is (1,2)γ-continuous.
- (ii) The inverse image of each $\sigma_1\sigma_2$ -closed set in Y is $(1,2)\gamma$ -closed in X.
- (iii) $(1,2)\gamma\text{-cl}[f^{(\text{-}1)}(V)] \subseteq f^{(\text{-}1)}[\sigma_1\sigma_2\text{-cl}(V)], \text{ for every } V \subseteq Y.$
- (iv) $f[(1,2)\gamma\text{-cl}(U)] \subseteq \sigma_1\sigma_2\text{-cl}[f(U)]$, for every $U \subseteq X$.

Proof

- (i) \Rightarrow (ii) Let $F \subseteq Y$ be a $\sigma_1 \sigma_2$ -closed set. Since $f: X \to Y$ is a $(1,2)\gamma$ -continuous of $f^{-1}[Y-F] = X f^{-1}(F)$ and this set is $(1,2)\gamma$ -open. Therefore, $f^{-1}(F)$ is $(1,2)\gamma$ -closed in X.
- (ii) \Rightarrow (iii) Since $\sigma_1\sigma_2\text{-cl}(V)$ is $\sigma_1\sigma_2\text{-closed}$ for every $V \subseteq Y$, $f^{(-1)}[\sigma_1\sigma_2\text{-cl}(V)]$ is (1,2), closed.

 $\mathrm{Therefore},\ f^{(\cdot 1)}[\sigma_1\sigma_2\text{-}\mathrm{cl}(V) = (1,2)\gamma\text{-}\mathrm{cl}[f^{(\cdot 1)}(\sigma_1\sigma_2\text{-}\mathrm{cl}(V))] \supseteq (1,2)\gamma\text{-}\mathrm{cl}[f^{(\cdot 1)}(V)].$

 $(iii) \Rightarrow (iv) \ Let \ U \subseteq X \ and \ f(U) = V. \ Then \ f^{(\cdot l)}[\sigma_1\sigma_2 \text{-cl}(V)] \supseteq (1,2)\gamma \text{-cl}[f^{\cdot l}(V)].$

Thus $f^{\text{-}1}(\sigma_1\sigma_2\text{-cl}(f(U))\supseteq (1,2)\gamma\text{-cl}[f^{\text{-}1}(f(U))]\supseteq f[(1,2)\gamma\text{-cl}(U)].$

 $(iv) \Rightarrow (ii) \ Let \ W \subseteq Y \ be \ a \ \sigma_1\sigma_2\text{-closed set}, \ U = f^{\text{-}1}(W), \ then \ f[(1,2)\gamma\text{-cl}(U)] \subseteq \sigma_1\sigma_2\text{-cl}(W) = f^{\text{-}1}[f(1,2)\gamma\text{-cl}[f(f^{\text{-}1}(W))] = \sigma_1\sigma_2\text{-cl}(W) = W.$

Thus $(1,2)\gamma\text{-cl}(U)\subseteq f^{(-1)}[f((1,2)\gamma\text{-cl}(U))]\subseteq f^{(-1)}(W)=U.$ So U is $(1,2)\gamma\text{-closed}.$

(ii) \Rightarrow (i) Let $V \subseteq Y$ be a $\sigma_1 \sigma_2$ -open set, then Y - V is $\sigma_1 \sigma_2$ -closed.

Then $f^1(Y - V) = X - f^1(V)$ is $(1,2)\gamma$ -closed in X and hence $f^1(V)$ is $(1,2)\gamma$ -open in

Remark 4.5

If $f: X \to Y$ is a function, and one of the following holds, then f is (1 continuous.

- (i) $f^{(-1)}[(1,2)\gamma-int(B)] \subseteq (1,2)\gamma-int(B)] \subseteq (1,2)\gamma-int[f^{(-1)}[(B)]$ for each $B \subseteq Y$.
- (ii) $(1,2)\gamma\text{-cl}[f^{(-1)}(B)] \subseteq f^{(-1)}[(1,2)\gamma\text{-cl}(B)]$ for each $B \subseteq Y$.
- (iii) $f[(1,2)\gamma\text{-cl}(A)] \subseteq (1,2)\gamma\text{-cl}[f(A)]$ for each $A \subseteq X$.

5. References

- [1] Andrijevic. D, "On the Topology generated by Pre-open sets", Mate. 39, (1987), pp. 367-376.
- [2] Ekici. E, "On R-spaces", International Journal of Pure and A Mathematics, Vol. 25, No. 2, (2005), pp. 163-172.
- [3] Kelly. K.C., "Bitopological Spaces", Proc. London Math. Soc. (1963), pp.71-89.
- [4] Lellis Thivagar .M, "Generalization of Pairwise α-Continuous Func Pure and Applied Mathematicka Science, 28, (1991), pp. 55-63.

- [5] Lellis Thivagar. M and Athisaya Ponmani. S, "Note on Some new Bitopological Separation Axioms", Proc. National Conference in Pure and Applied Mathematics, (2005), pp. 28-32.
- [6] Mashhour. A.S and Hasanein. LA, "On Precontinuous and Weak Precontinuous Mappings", Proc. Math. Phys. Soc. Egypt, 53, (1982), pp. 47-53.
- [7] Navalagi. G.B. Lellis Thivagar. M and Raja Rajeswari. R, "On γ irresolute Functions", Oriental Journal of Mathematical Sciences, Vol. 1, No. 2, (2007), pp. 91-99.