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Abstract Efficient and effective management of a supply

chain is of great importance for the success of the digital

economy. Coordination among the members of a supply

chain play a vital role for its effective management. The

members of the supply chain may agree to cooperate ini-

tially, but owing to the competition prevailing in business

environments, theymay be tempted tomaximize their profits

and deviate from any agreement. So, effective mechanism is

essential to enforce coordination among the members in a

supply chain. In today’s competitive environment, the

inventory managers are also interested in simple and easy

procedures to apply them in their organizations. This paper

investigates a single-manufacturer and a single-buyer two

echelon supply chain model for a fixed lifetime product in a

fuzzy cost environment with a quantity discount strategy as a

coordination mechanism. Crisp models are developed under

different scenarios (1) without coordination (2) with coor-

dination and (3) system optimization. Fuzzy models are also

formulated by representing the ordering cost and the holding

cost of the manufacturer by trapezoidal fuzzy numbers.

Signed distance method is adopted for defuzzification.

Numerical results highlighting the sensitivity of various

parameters are also elucidated.

Keywords Supply chain coordination � Inventory �
Quantity discount � Fixed lifetime product � Fuzzy
numbers � Signed distance method

1 Introduction

Globalization has maximized business endeavors and

ensured the stability of the economy of any nation. Chal-

lenges are in business but they make the business people

more competitive and successful. Due to technological

innovation and easy access to alternative products in today’s

market, customers move towards the product of their own

choice. Supply chain is a complex system that involves dif-

ferent kinds of people (manufacturers cum suppliers,

wholesalers, vendors, retailers, end customers etc.), resour-

ces required and available, information exchanged and

activities performed. The present study concerns the two-

echelon supply chain involving exclusively, the manufac-

turer and the buyer. Co-ordination between them is essential

for the success of any business. Deviation of any one of them

from the agreement for the sake of more profit will be

detrimental to business. As success is the ultimate end of any

business, enough care has to be taken in inventory manage-

ment. A probe into the supply chain inventory models

developed by various researchers will provide a clear

understanding of the study undertaken.

2 Literature review

In real life, items such as medicinal products, food stuffs,

provisions, chemicals, fresh products, etc. have fixed shelf

life times. Perishability of such products is a pertinent issue
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globally. An ineffective inventory management of such

products at each level of the supply chain increases the cost

of the system. So, numerous researchers have worked on

perishable inventory models. Hwang and Hahn (2000) have

presented an optimal procurement policy for items with an

inventory level-dependent demand rate and fixed lifetime.

The investigation of Kanchana and Anulark (2006) were on

the effect of product perishability and retailer’s stockout

policy on the total cost, net profit, service level and average

inventory level in a two echelon inventory system and they

proposed a periodic review inventory distribution model

for dealing a fixed life perishable product.

Effective inventory management is one of the most

significant task of a global manufacturing supply chain

strategy. So, coordination mechanism such as quantity

discount, credit option, sales rebate, etc. were incorporated

in two echelon supply chain inventory models developed

by various researchers. Monahan (1984), Jucker and

Rosenblatt (1985), Lee and Rosenblatt (1986), Goyal and

Gupta (1989) and Weng (1995) have focussed on quantity

discount as a coordination mechanism. Luo (2007) devel-

oped a buyer–vendor coordination supply chain model with

credit period incentive as a coordination mechanism. Sales

rebate as a coordination mechanism was incorporated in

the model developed by Wong et al. (2009).

Bannerjee (1986) proposed an integrated vendor–buyer

(IVB) model where the demand rate of the buyer is a

constant and the manufacturer’s production schedule is to

produce the same amount of inventory as the buyer orders

each time. However this lot for lot policy would not be

optimal if the manufacturer’s setup cost was significantly

larger than the buyer’s ordering cost. So, the frequency of

manufacturer’s setup should not be the same as that of the

buyer’s ordering. Ben-Daya and Hariga (2004) proposed an

integrated single vendor single buyer model with stochastic

demand and variable lead time. Huang (2004) discussed an

optimal policy for a single vendor single buyer integrated

production inventory problem with process unreliability

consideration. Lee (2005) developed an integrated inven-

tory control model that comprised of IVB and integrated

procurement production (IPP) systems making joint eco-

nomic lotsizes of manufacturer’s raw material ordering,

production batch and buyer’s ordering. The effectiveness

of the quantity discount strategy in a single vendor and a

single buyer supply chain for a fixed life time product was

investigated by Duan et al. (2010). An integrated supply

chain model for perishable items with trade credit policy

under imprecise environment was presented by Singh and

Singh (2012). Recently, a two level supply chain coordi-

nation with delay in payments for fixed lifetime products

was highlighted by Duan et al. (2012). A production

inventory model with probabilistic deterioration in two-

echelon supply chain management was developed by

Sarkar (2013). Taleizadeh et al. (2013) presented an eco-

nomic order quantity (EOQ) model for perishable product

with special sale and shortage. Recently Taleizadeh and

Nematollahi (2014) have developed an inventory control

problem for deteriorating items with backordering and

financial considerations.

In today’s challenging environment, the cost compo-

nents involved in maintaining inventories are always likely

to vary from one cycle to another and it is also not so easy

to get the real statistical data especially for newly launched

products. Hence it is difficult to find the probability dis-

tributions of these variables. As fuzziness is the closest

possible approach to reality, the introduction of fuzzy set

theory by Zadeh (1965) has drawn the attention of many

researchers in different areas of science and technology

including inventory control problems. In the classical

newsboy problem, Ishii and Konno (1998) fuzzified the

shortage cost to a L-fuzzy number. Maiti and Maiti (2006)

have developed a fuzzy inventory model with two ware-

houses under different possible constraints. A two storage

inventory model with fuzzy deterioration over a random

planning horizon was discussed by Maiti et al. (2006).

Using geometric programming approach, a pricing and

marketing planning model was developed by Sadjadi et al.

(2010) in which the selling price, marketing expenditure

and lot size are considered as fuzzy numbers.

Based on the extension principle, Liu (2012) has pre-

sented a solution to the fuzzy integrated production and

marketing planning model. Fuzzy EOQ models for deterio-

rating items and for imperfect items with inspection errors

and shortages were developed by Saha and Chakrabarti

(2012) and Liu and Zheng (2012) respectively. Yadav et al.

(2013) have discussed the retailers optimal policy under

trade credit and inflation in a fuzzy environment.

Notable researchers Yao and Lee (1999), Yao et al. (2003),

Maiti (2011), Kumar et al. (2012) andMahata and Goswami

(2013) have worked on developing fuzzy inventory models

by fuzzifying one or more parameters and keeping the

remaining as crisp parameters. Recently, Samal and Pratihar

(2014) have investigated an inventorymodelwhich provided

an optimum value of EOQ under uncertainties owing to

fuzziness in demand and various costs like ordering cost,

holding cost and backordering cost. Numerous defuzzifica-

tion methods such as centroid method, graded mean inte-

gration representation method, signed distance method,

extension principle method, etc., have been suggested in the

literature. Ouyang and Chang (2001) used the centroid

method to defuzzify the fuzzy total cost. Graded mean

integration representation method was adopted by Dutta and

Chakraborty (2005) to find the optimal order quantity in a

single-period inventory model with discrete fuzzy random

demand involving imprecise probabilities. Yao and Chiang

(2003) developed an EOQ model with the total demand and
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the unit carrying cost being triangular fuzzy numbers in

which the signed distance and the centroid defuzzification

methods are used. Chiang et al. (2005) also adopted the

signed distance method to defuzzify the fuzzy total cost.

Researchers Bjork (2009) and Yao et al. (2003), etc. have

shown that signed distance method is better than other

methods of defuzzification.

The focus of this paper is on a two echelon supply chain

model consisting of a single manufacturer and a single

buyer dealing with a fixed life time product. A manufac-

turing system is considered in which the manufacturer

produces the product at a finite constant rate P. In order to

avoid shortages it is assumed that the production rate is

greater than the demand rate. Initially the order size of the

buyer is Q0 and that of the manufacturer is an integer

multiple of the buyer. In order to reduce the setup cost,

ordering cost and inventory holding costs, the manufacturer

influences the buyer to change his order size by a factor

K(K[ 1) proposing an order size dependent quantity dis-

count offer which ultimately decreases his inventory costs

and earns him additional savings. The effectiveness of the

quantity discount strategy is analyzed by developing crisp

models under three different scenarios. To study the effect

of uncertainties on inventory decisions, fuzzy models are

also formulated by representing the ordering cost and the

holding cost of the manufacturer as fuzzy trapezoidal

numbers. Signed distance method is adopted for defuzzi-

fication in each model owing to its efficiency.

The paper is designed as follows. In Sect. 3, the

assumptions and notations to be used throughout the paper

are introduced. Section 4 deals with the crisp models: (1) a

model without system coordination (2) a model with sys-

tem coordination and (3) a model for system optimization.

The effectiveness of the quantity discount strategy is also

analyzed. In Sect. 5, inventory models with fuzzy cost

components are developed. In Sect. 6, a numerical example

is provided and sensitivity analysis is carried out to analyze

the impact of various crisp parameters on the optimal

solution. The proposed model serves as a pioneering work

to analyze the effectiveness of the quantity discount strat-

egy in a two-echelon supply chain management under

fuzzy environment.

3 Assumptions and notations

The following assumptions and notations are used in

developing the crisp inventory model.

3.1 Assumptions

1. Demand rate is known and constant

2. Production rate is known and constant, P[D.

3. The lead time is zero and the replenishment rate is

infinite.

4. Shortages are not allowed.

5. A single item is considered.

6. The items ordered by the buyer are received new and

fresh (Hwang and Hahn 2000) that is, their age equals

zero. To be more realistic, if the items received have

positive age denoted by l, as l is exogenous, replacing

the product lifetime L by L ¼ L� l in the following

analysis, the general case leads to the same

conclusions.

3.2 Notations

D Annual demand of the buyer, units/year.

P Manufacturer’s production rate, units/year.

L Lifetime of the product.

A1 Manufacturer’s production setup cost per batch,

$= batch.

A2 Buyer’s ordering cost per order, $= order.

h1 Manufacturer’s holding cost.

h2 Buyer’s holding cost.

p2 Delivered unit price paid by the buyer.

Q0 Buyer’s economic order quantity, units/order.

m Manufacturer’s order multiple in the absence of

any coordination.

m� Optimal value of m.

K Buyer’s order multiple under coordination.

n Manufacturer’s order multiple under

coordination.

n� Optimal value of n.

d(K) Discount factor to the buyer if he orders KQ0

per unit time.

TCB Total annual cost of the buyer.

TCMðmÞ Total cost of the manufacturer without

coordination.

TCMðnÞ Total cost of the manufacturer with

coordination.

4 Crisp inventory models

4.1 Model formulation for the system

without coordination

The inventory model for a single manufacturer and a

single buyer supply chain for a single fixed lifetime

product is designed similar to that as in Lee (2005): The

manufacturer produces the product in batches at a finite

rate P(P[D) so as to avoid shortages. The finished

goods are delivered to the buyer periodically. In the

absence of any coordination, the optimal ordering
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quantity of the buyer is Q0 ¼
ffiffiffiffiffiffiffiffi

2DA2

h2

q

and therefore the

total annual cost of the buyer is TCB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2DA2h2
p

. To

meet the buyer’s demand at fixed interval’s of time

t0 ¼ Q0=D, the production lot size of the manufacturer is

mQ0, where m is a positive integer. The operations of

manufacturer’s production and the delivery of its fin-

ished goods is considered to be synchronous. During the

production uptime, the manufacturer’s on hand finished

goods are gradually increasing with a rate P and it

depletes by a quantity Q0 for every time interval Q0=D.

Therefore the on hand inventory appears as a sawtooth

pattern during production uptime. While during the

production downtime the manufacturer’s finished goods

inventory is flat if no replenishment has occurred, and it

will be depleted by a quantity Q0 when a quantity Q0 is

delivered to the buyer. Figures 1 and 2 represents the

inventory of the buyer and the time weighted inventory

of the manufacturer respectively.

From Fig. 2, the manufacturer’s average inventory of

finished goods

¼ D

mQ0

½Area of EACD� Area of EAB

� Accumulated buyer consumption�

¼
h

mQ0

Q0

P
þ ðm� 1ÞQ0

D

� �

� 1

2
ðmQ0ÞðmQ0=PÞ

� mðm� 1Þ
2

Q0

Q0

D

i

=
mQ0

D

¼ Q0

2
ðm� 1Þ

�

1� D

P

�

þ D

P

� �

Hence the total cost for the manufacturer is given by

TCMðmÞ ¼
DA1

mQ0

þ h1Q0

2
ðm� 1Þ

�

1� D

P

�

þ D

P

� �

¼ A1

m

ffiffiffiffiffiffiffiffi

Dh2

2A2

r

þ h1

ffiffiffiffiffiffiffiffiffi

DA2

2h2

r

ðm� 1Þ
�

1� D

P

�

þ D

P

� �

So, the manufacturer’s problem without coordination can be

formulated as follows:Min TCMðmÞ subject to the constraints
mt0 � L;

m� 1

	

ð4:1Þ

where mt0 � L ensures that items remain fresh before they

are used by the buyer.

Theorem 1 Let m* be the optimum value of m obtained

from (4.1). If L2 � 2A2

Dh2
then

m� ¼ min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A1h2

A2h1ð1� D
P
Þ þ

1

4

s

� 1

2

& ’

;
L
ffiffiffiffiffiffi

2A2

Dh2

q

2

6

4

3

7

5

8

>

<

>

:

9

>

=

>

;

ð4:2Þ

where xd e is the least integer greater than or equal to x,

L2 � 2A2

Dh2
is ensures that m� � 1.

Proof Since

d2TCMðmÞ
dm2

¼ 2A1

m3

ffiffiffiffiffiffiffiffi

Dh2

2A2

r

[ 0

TCMðmÞ is strictly convex in m. Let m�
1 be the optimum of

minm� 1 TCMðmÞ then

m� ¼ max

	

min
n

mjTCMðmÞ� TCMðmþ 1Þ
o

; 1




¼ max

	

min
n

mðmþ 1Þ� A1h2

A2h1ð1� D
P
Þ

o

; 1




¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A1h2

A2h1ð1� D
P
Þ þ

1

4

s

� 1

2

& ’

� 1

using t0 ¼
ffiffiffiffiffiffi

2A2

Dh2

q

in (4.1), we get m
ffiffiffiffiffiffi

2A2

Dh2

q

� L

Set m�
2 ¼ L

ffiffiffiffiffi

2A2
Dh2

q

2

4

3

5. Since L2 � 2A2

Dh2
;m�

2 � 1 is true. Since

TCMðmÞ is convex in m, if m�
1 �m�

2;m
� ¼ m�

1 else

m� ¼ m�
2. So if L2 � 2A2

Dh2
;m� ¼ minfm�

1;m
�
2g.

Remark 1 For the system without coordination, the pro-

duction lot size of the manufacturer is m� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2DA2=h2
p

units

each year with an interval of m� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2DA2=h2
p

=D throughout

that time. The minimised total cost is TCMðm�Þ.

4.2 Model formulation for the system

with coordination

If the current order size of the buyer is changed by a factor

K(K [ 1), the manufacturer agrees to offer a quantity

discount at a discount factor d(K) so that the order quantity

of the manufacturer and the buyer are nKQ0 (n is a positive

integer) and KQ0 respectively. The total cost TCMðnÞ of the
manufacturer is given byFig. 1 Buyer’s inventory
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TCMðnÞ ¼
DA1

nKQ0

þ KQ0h1

2

h

ðn� 1Þ
�

1� D

P

�

þ D

P

i

þ p2DdðKÞ
ð4:3Þ

The problem with coordination can be formulated as

follows:

Min TCMðnÞ
subject to the constraints

nKt0 � L

DA2

KQ0

þ KQ0h2

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2DA2h2
p

� p2DdðKÞ

n� 1

8

>

>

<

>

>

:

ð4:4Þ

The first constraint ensures the freshness of the items

before they are sold by the buyer whereas the second

constraint is the retailer’s participation constraint. (i.e) The

buyer’s cost under coordination cannot exceed that in the

absence of any coordination.

Theorem 2 Let m� and n� be the optimum value of m and

n obtained from (4.1) and (4.4) respectively then

TCMðn�Þ� TCMðm�Þ ð4:5Þ

Proof If the buyer changes his order size by a factor

K(K[ 1) it increases his inventory cost and so the man-

ufacturer offers him a compensation p2DdðKÞ. This com-

pensation takes the smallest value when the second

constraint is an equation. So if TCMðnÞ is minimized then

DA2

KQ0

þ KQ0h2

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2DA2h2
p

¼ p2DdðKÞ

and hence

dðKÞ ¼
DA2

KQ0
þ KQ0h2

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2DA2h2
p

p2D
ð4:6Þ

putting K ¼ 1 in (4.6) we get

dð1Þ ¼
DA2

Q0
þ Q0h2

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2DA2h2
p

p2D
¼ 0

Hence (4.4) is equivalent to (4.1) if K ¼ 1. i.e (4.1) is a

special case of (4.4) and so (4.5) holds.

Remark 2 The result of the above theorem is shown

graphically in Fig. 3. As the optimal total cost under

coordination is less than that without coordination, the

manufacturer will be benefitted by motivating the buyer to

order KQ0 units every time.

Next the manufacturer’s and the buyer’s optimal order

quantity will be determined as follows. Substituting (4.6)

into (4.3) we get,

TCMðnÞ¼
D

KQ0

½A1

n
þA2�þ

KQ0

2
½h1½ðn�1Þð1�D

P
ÞþD

P
�

þh2��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2DA2h2Þ
p

Since d(K) is convex in K, TCMðnÞ is obviously convex in

K. Let K� be the minimum of TCMðnÞ, then

K�ðnÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðDA1

nQ0
þ DA2

Q0
Þ

Q0h1½ðn� 1Þð1� D
P
Þ þ D

P
� þ Q0h2

s

ð4:8Þ

substituting (4.8) and t0 ¼
ffiffiffiffiffiffi

2A2

Dh2

q

in nKt0 � L we get n2ðA1

n
þ

A2Þ� L2Q2
0
h2

4A2
½h1ððn� 1Þð1� D

P
Þ þ D

P
Þ þ h2�

Then the first constraint of (4.4) becomes

gðnÞ¼�A2n
2þn

L2Dh1

2
ð1�D

P
Þ�A1

� �

þL2D

2

� h2�h1þ
2Dh1

P

� �

�0 ð4:9Þ

Substituting (4.8) and Q0¼
ffiffiffiffiffiffiffiffi

2DA2

h2

q

into TCMðnÞ, we get

TCMðnÞ ¼
 

2

"

DA1h1 1� D

P

� �

þ 1

n
DA1ðh2 � h1Þ þ

2D2h1A1

P

� �

þ n DA2h1ð1�
D

P
Þ

� �

� DA2h1 1� 2D

P

� �

þ DA2h2

#!1=2

�
�

2DA2h2

�1=2

ð4:10Þ

Fig. 2 Manufacturer’s inventory
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Since
ffiffiffi

x
p

is a strictly increasing function for x� 0, the

problem given by (4.4) becomes

Min gTCM ðnÞ ¼
"

DA1h1

�

1� D

P

�

þ 1

n
DA1ðh2 � h1Þ þ

2D2h1A1

P

� �

þ n DA2h1
�

1� D

P

�

� �

� DA2h1

�

1� 2D

P

�

þ DA2h2

#

subject to the constraints

gðnÞ� 0

n� 1

	

ð4:11Þ

which is a nonlinear programming problem. Since

gTCM
00ðnÞ ¼ 2A1ðh2 � h1Þ=n3 þ 4D2h1A1=n

3P, [ 0 when

h2 � h1, gTCM ðnÞ is convex when h2 � h1 and concave

otherwise. Also since g00ðnÞ ¼ �2A2\0, g(n) is strictly

concave.

Proposition 1 Let n�1 be the minimum of gTCM ðnÞ for

n� 1 then

n�1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A1

A2

ðh2 � h1

h1
þ 2D

P
Þ þ 1

4

r

� 1

2

 �

A1

A2

ðh2 � h1

h1
þ 2D

P
Þ� 2

1 otherwise

8

<

:

ð4:12Þ

Proof Since n�1 is the minimum of gTCM ðnÞ for n� 1, the

following inequality holds: gTCM ðn�1Þ�min ðgTCM ðn�1 �
1Þ; gTCM ðn�1 þ 1ÞÞ gTCM ðn�1Þ � gTCM ðn�1 � 1Þ� 0 ¼)
�

n�1 �
1

2

�2 � A1

A2

h2 � h1

h1
þ 2D

P

� �

þ 1

4
ð4:13Þ

Similarly, gTCM ðn�1Þ � gTCM ðn�1 þ 1Þ� 0 ¼)
�

n�1 þ
1

2

�2 � A1

A2

h2 � h1

h1
þ 2D

P

� �

þ 1

4
ð4:14Þ

Hence if A1

A2
ðh2�h1

h1
þ 2D

P
Þ þ 1

4
\0, gTCM ðn�1Þ� gTCM ðn�1 þ 1Þ

for any given n, so n�1 ¼ 1. If A1

A2
ðh2�h1

h1
þ 2D

P
Þ þ 1

4
� 0, by

(4.13) and (4.14),
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A1

A2

ðh2 � h1

h1
þ 2D

P
Þ þ 1

4

r

� 1

2
� n�1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A1

A2

ðh2 � h1

h1
þ 2D

P
Þ þ 1

4

r

þ 1

2

Therefore, n�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A1

A2
ðh2�h1

h1
þ 2D

P
Þ þ 1

4

q

� 1
2

l m

If 0\ A1

A2
ðh2�h1

h1
þ 2D

P
Þ\2 then n�1 ¼ 1 so (4.12) holds.

Proposition 2 Let n�2ð1Þ and n�2ð2Þ be solutions of the

quadratic equation gðnÞ ¼ 0 then the following two con-

clusions hold.

(i) If ðL2Dh1
2

ð1� D
P
Þ � A1Þ2 þ 2A2L

2Dðh2 � h1 þ
2Dh1
P
Þ\0 or ðL2Dh1

2
ð1� D

P
Þ � A1Þ2 þ 2A2L

2Dðh2 �
h1 þ 2Dh1

P
Þ� 0 and n�2ð1Þ\1 then gðnÞ\0 for n� 1

(ii) If
�

L2Dh1
2

�

1� D
P

�

� A1

�2 þ 2A2L
2Dðh2 � h1 þ

2Dh1
P
Þ� 0 and n�2ð1Þ � 1, then

(a) if n�2ð2Þ � 1, gðnÞ� 0 for n�2ð2Þ

l m

� n� n�2ð1Þ

h i

(b) if n�2ð2Þ\1 and n�2ð1Þ � 1, gðnÞ� 0 for

1� n� n�2ð1Þ

h i

Proof
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Fig. 3 The total cost curve

n�2ð1Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2Dh1
2

1� D
P

� �

� A1

� �2

þ2A2L2D h2 � h1 þ 2Dh1
P

� �

r

þ L2Dh1
2

1� D
P

� �

� A1

� �

2A2

n�2ð2Þ ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2Dh1
2

1� D
P

� �

� A1

� �2

þ2A2L2D h2 � h1 þ 2Dh1
P

� �

r

þ L2Dh1
2

1� D
P

� �

� A1

� �

2A2
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Because g(n) is a quadratic equation, the following con-

clusions hold.

(1) If

L2Dh1
2

1� D
P

� �

� A1

� �2

þ2A2L
2D h2 � h1 þ 2Dh1

P

� �

\0

then gðnÞ\0 for every n.

(2) If

L2Dh1
2

1� D
P

� �

� A1

� �2

þ2A2L
2D h2 � h1 þ 2Dh1

P

� �

� 0

then n�2ð1Þ and n�2ð2Þ are the real solutions of g(n) = 0

In view of n� 1,

(i) if n�2ð1Þ\1 then gðnÞ\0 for n� 1.

(ii) if n�2ð2Þ � 1 then gðnÞ� 0 for n�2ð2Þ

l m

� n� n�2ð2Þ

h i

.

Hence the proof. h

Remark 3 If (i) of Proposition 2 holds, the first constraint

of (4.4) does not hold for any n� 1 and in this case the

problem is meaningless. If (ii) of Proposition 2 holds, the

first constraint of (4.4) hold for n�2ð2Þ

l m

� n� n�2ð1Þ

l m

or

1� n� n�2ð1Þ

l m

.

Theorem 3 If h2 � h1 and n�2ð1Þ � 1; then

(i) if 1� n�1 � n�2ð1Þ

h i

; n� ¼ n�1.

(ii) if n�1 [ n�2ð1Þ

h i

; n� ¼ n�2ð1Þ

h i

.

Proof If h2 � h1, gTCM ðnÞ is a convex function. Since n�1

is the minimum of gTCM ðnÞ for n� 1, if 1� n�1 � n�2ð1Þ

h i

then n� ¼ n�1. If n�1 � n�2ð1Þ

h i

, then n� � n�2ð1Þ

h i

. Since

gTCM ðnÞ is decreasing on this interval, (ii)holds. Hence the

proof. h

Theorem 4 if h2 � h1 then K�ðn�Þ[ 1:

Proof We know that K�ðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2ðA1n þA2Þ
A2

�

h1

�

ðn�1Þð1�D
P
ÞþD

P

�

þh2

�

r

(i) If n� ¼ n�1 and A1

A2
ðh2�h1

h1
þ 2D

P
Þ� 2 then n� ¼ n�1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A1

A2
ðh2�h1

h1
þ 2D

P
Þ þ 1

4

q

� 1
2

l m

Since
ffiffiffiffiffiffiffiffiffiffi

xþ 1
4

q

� 1
2

l m

�
ffiffiffi

x
p

þ 1 holds for x� 0, and

K�ðnÞ is a decreasing function of n, to prove that

K�ðn�Þ[ 1 it is enough to prove that

K�ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A1

A2
ðh2�h1

h1
þ 2D

P
Þ

q

þ 1Þ[ 1

i.e.

h2

�

A1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A1
A2
ðh2�h1

h1
þ2D

P
Þ

q

þ1

þ A2

�

A2

"

h1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A1

A2
ðh2�h1

h1
þ 2D

P
Þ

q �

1� D
P

�

þ D
P

h i

þ h2

# [ 1

ð4:15Þ

By a simple computation, we get

PA1h2 [DA2h1 ð4:16Þ

Since A1;A2; h1; h2 are all positive and P[D,

inequality (4.16) is true.

(ii) If n� ¼ n�1 ¼ 1, K�ð1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðA1 þ A2Þ=A2

p

. Since

A1;A2 are both positive, K�ð1Þ[ 1.

(iii) If n� ¼ ½n�2ð1Þ� then n�1 [ ½n�2ð1Þ�. In view of

K�ðn�1Þ[ 1, and K�ðnÞ is a decreasing function ,

so K�ð½n�2ð1Þ�Þ�K�ðnÞ[ 1.

By (i)–(iii), K�ðnÞ[ 1 if h2 � h1. Hence the proof. h

4.3 Model formulation for system optimisation

If there is a common decision maker for both the buyer and

the manufacturer, the objective is to minimize the total cost

of the system. Let Q be the buyer’s order quantity, then the

manufacturer produces nQ units every time, where Q and n

are decision variables. The problem for system optimisa-

tion can be formulated as follows:

Min TCSðn;QÞ ¼
DA1

nQ
þ h1Q

2
�

ðn� 1Þ
�

1� D

P

�

þ D

P

�

þ DA2

Q
þ Qh2

2

subject to the constraints

nQ

D
� L

n� 1

8

<

:

ð4:17Þ

Theorem 5 The proposed quantity discount strategy can

achieve system coordination.

Proof TCSðn;QÞ is convex in Q. Let Q� be the buyer’s

optimal order quantity, then Q� satisfies

oTCSðn;QÞ
oQ

�

�

�

Q¼Q�
¼
�

�DA1

n
� DA2

� 1

ðQ�Þ2
þ h1

2
h

ðn� 1Þ 1� D

P

� �

þ D

P

i

þ h2

2
¼ 0

ð4:18Þ

so,
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Q�ðnÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2DðA1

n
þ A2Þ

h1½ðn� 1Þð1� D
P
Þ þ D

P
� þ h2

s

ð4:19Þ

Using the above equations, the problem is equivalent to

MingTCs ðnÞ ¼
�

DA1h1

�

1� D

P

�

þ DA1

n

�

h2 � h1 þ
2Dh1

P

�

þ nDA2h1

�

1� D

P

�

� DA2h1

�

1� 2D

P

�

þ DA2h2

�

subject to the constraints

�A2n
2 þ n

L2Dh1

2
1� D

P

� �

� A1

� �

þ L2D

2
h2 � h1 þ

2Dh1

P

� �

� 0

n� 1

8

<

:

ð4:20Þ

It is obvious that (4.20) is exactly the same as (4.11), so

they have the same optimum n�. Also,

TCsðn�Þ ¼ TCMðn�Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2DA2h2
p

ð4:21Þ

where
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2DA2h2
p

is the buyer’s actual cost under non-co-

ordination and the buyer’s optimal order quantity under

coordination is equal to that under system optimisation.

i.e.

K�ðn�ÞQ0 ¼ Q�ðn�Þ ð4:22Þ

The manufacturer’s optimal order quantity is equal in these

two cases.

i.e.

n�K�ðn�ÞQ0 ¼ n�Q�ðn�Þ ð4:23Þ

The above three equations reveal that the quantity discount

contract can achieve coordination.

5 Inventory models with fuzzy cost components

Fuzzy inventory models are developed based on the pre-

liminaries given in ‘‘Appendix’’. Let the ordering cost and

the holding cost of the manufacturer be fuzzy and all other

components be crisp constants. Let them be represented by

trapezoidal fuzzy numbers as given below.

~A1 ¼ ðA1 � d1; A1 � d2; A1 þ d3; A1 � d4Þ
~h1 ¼ ðh1 � d5; h1 � d6; h1 þ d7; h1 � d8Þ

ð5:1Þ

where di; i ¼ 1; 2; . . .8, are arbitrary positive numbers

under the following restrictions: A1 [ d1 [ d2; d3\d4;
h1 [ d5 [ d6; d7\d8. Then

~A1LðaÞ ¼ A1 � d1 þ ðd1 � d2Þa [ 0; ~A1RðaÞ ¼ A1 þ d4 � ðd4 � d3Þa [ 0

~h1LðaÞ ¼ h1 � d5 þ ðd5 � d6Þa[ 0; ~h1RðaÞ ¼ h1 þ d8 � ðd8 � d7Þa[ 0

ð5:2Þ

are the left and right limits of a cuts of ~A1; ~A2; ~h1; and ~h2.

5.1 Fuzzy inventory model without coordination

When the ordering cost and the holding cost of the man-

ufacturer are fuzzified to be ~A1, and ~h1; as expressed in

Eq. (5.1), the manufacturer’s problem without coordination

can be formulated in the fuzzy sense as

Min gTCMðmÞ ¼
D ~A1

mQ0

þ
~h1Q0

2
ðm� 1Þ

�

1� D

P

�

þ D

P

� �

¼
~A1

m

ffiffiffiffiffiffiffiffi

Dh2

2A2

r

þ ~h1

ffiffiffiffiffiffiffiffiffi

DA2

2h2

r

ðm� 1Þ
�

1� D

P

�

þ D

P

� �

subject to

mt0 � L;

m� 1

	

ð5:3Þ

Using Eq. (5.2), the left and right limits of the a

cut,(0� a� 1), of gTCMðmÞ are respectively,

gTCMLðmÞðaÞ ¼
~A1LðaÞ
m

ffiffiffiffiffiffiffiffi

Dh2

2A2

r

þ ~h1LðaÞ
ffiffiffiffiffiffiffiffiffi

DA2

2h2

r

ðm� 1Þ
�

1� D

P

�

þ D

P

� �

subject to

mt0 � L;

m� 1

	

ð5:4Þ

and

gTCMRðmÞðaÞ ¼
~A1RðaÞ
m

ffiffiffiffiffiffiffiffi

Dh2

2A2

r

þ ~h1RðaÞ
ffiffiffiffiffiffiffiffiffi

DA2

2h2

r

� ðm� 1Þ
�

1� D

P

�

þ D

P

� �

subject to

mt0 � L;

m� 1

	

ð5:5Þ

Hence when the costs are described using trapezoidal fuzzy

numbers, the defuzzified value of gTCMðmÞ is as given

below.

dð gTCMðmÞ; ~0Þ ¼
M1

m

ffiffiffiffiffiffiffiffi

Dh2

2A2

r

þM2

ffiffiffiffiffiffiffiffiffi

DA2

2h2

r

ðm� 1Þ
�

1� D

P

�

þ D

P

� �

subject to

mt0 � L;

m� 1

	

ð5:6Þ

where

M1 ¼ A1 þ
1

4
ðd4 þ d3 � d2 � d1Þ[ 0:

M2 ¼ h1 þ
1

4
ðd8 þ d7 � d6 � d5Þ[ 0:
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When the costs are represented by trapezoidal numbers, the

defuzzified value dð gTCMðmÞ; ~0Þ is taken as the estimate of

fuzzy cost function (5.3), denoted by FC	
1 ðmÞ and is

clearly a convex function of m. Since m� 1 is discrete,the

optimal value of m is obtained from the following

equation.

m	� ¼ max

	

min
n

mjFC	
1 ðmÞ�FC	

1 ðmþ 1Þ
o

; 1




¼ max

	

min
n

mðmþ 1Þ� M1h2

A2M2ð1� D
P
Þ

o

; 1




¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M1h2

A2M2ð1� D
P
Þ þ

1

4

s

� 1

2

& ’

� 1

ð5:7Þ

Equation (5.7) gives the optimal value of m	� as

m	� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M1h2
M2A2ð1�D

P
Þ þ

1
4

q

� 1
2

 �

� 1

5.2 Fuzzy inventory model with coordination

If the current order size of the buyer is changed by a factor

K(K [ 1), the manufacturer agrees to offer a quantity

discount at a discount factor d(K) so that the order quantity

of the manufacturer and the buyer are nKQ0, n is a positive

integer and KQ0 respectively. The total cost
~TCMðnÞ of the

manufacturer is thus given by

~TCMðnÞ ¼
D ~A1

nKQ0

þ KQ0
~h1

2

h

ðn� 1Þ
�

1� D

P

�

þ D

P

i

þ p2DdðKÞ

ð5:8Þ

Thus the manufacturer’s problem with coordination can be

formulated in the fuzzy sense as Min ~TCMðnÞðaÞ subject to
the constraints

nKt0 � L

DA2

KQ0

þ KQ0h2

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2DA2h2
p

� p2DdðKÞ

n� 1

8

>

>

<

>

>

:

ð5:9Þ

Using Eq. (5.2), the left and right limits of the a

cut,(0� a� 1), of gTCMðmÞ are respectively,

~TCMLðnÞðaÞ ¼
D ~A1LðaÞ
nKQ0

þ KQ0
~h1LðaÞ

2

h

ðn� 1Þ
�

1� D

P

�

þ D

P

i

þ p2DdðKÞ
nKt0 � L

DA2

KQ0

þ KQ0h2

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2DA2h2
p

� p2DdðKÞ

n� 1

8

>

>

<

>

>

:

ð5:10Þ

and

~TCMRðnÞðaÞ ¼
D ~A1RðaÞ
nKQ0

þ KQ0
~h1RðaÞ

2
h

ðn� 1Þ
�

1� D

P

�

þ D

P

i

þ p2DdðKÞ

nKt0 � L

DA2

KQ0

þ KQ0h2

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2DA2h2
p

� p2DdðKÞ

n� 1

8

>

>

<

>

>

:

ð5:11Þ

Hence when the costs are described using trapezoidal fuzzy

numbers, the defuzzified value of ~TCMðnÞ is as given

below.

dð ~TCMðnÞ; ~0Þ ¼
D ~M1

nKQ0

þ KQ0
~M2

2

h

ðn� 1Þ
�

1� D

P

�

þ D

P

i

þ p2DdðKÞ

subject to

nKt0 � L

DA2

KQ0

þ KQ0h2

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2DA2h2
p

� p2DdðKÞ

n� 1

8

>

>

<

>

>

:

ð5:12Þ

When the costs are represented by trapezoidal numbers, the

defuzzified value dð ~
TCMðmÞ; ~0Þ is taken as the estimate of

fuzzy cost function (5.8), denoted by FC	
2 ðnÞ. From

Eq. (5.12), it is clear that the d(K) must be such that the

manufacturer’s inventory cost is minimized. Hence by

considering the equality constraint we get,

d	�ðKÞ ¼
DA2

KQ0
þ KQ0h2

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2DA2h2
p

p2D
ð5:13Þ

As the discount factor d(K) is convex in K, the estimate

given by Eq. (5.12) is also convex in K. Hence the unique

minimum is obtained from the following equation:

dðFC	
2 ðnÞÞ

dK
¼ 0 ð5:14Þ

Solving Eq. (5.14) gives,

K	�ðnÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðDM1

nQ0
þ DA2

Q0
Þ

Q0M2½ðn� 1Þð1� D
P
Þ þ D

P
� þ Q0h2

s

ð5:15Þ

5.3 Fuzzy inventory model for system optimization

If there is a common decision maker for both the buyer and

the manufacturer, the objective is to minimize the total cost

of the system.

Let Q be the buyer’s order quantity, then the manufac-

turer produces nQ units every time, where Q and n are
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decision variables. The problem for system optimisation

can be formulated as follows:

Min gTCS ðn;QÞ ¼
D ~A1

nQ
þ

~h1Q

2
�

ðn� 1Þ
�

1� D

P

�

þ D

P

�

þ DA2

Q
þ Qh2

2

subject to the constraints

nQ

D
� L

n� 1

8

<

:

ð5:16Þ

Using Eq. (5.2), the left and right limits of the a

cut,(0� a� 1), of ~TCSðn;QÞ are respectively,

gTCS ðn;QÞðaÞ¼
D ~A1LðaÞ

nQ
þ

~h1LðaÞQ
2

�

ðn�1Þ
�

1�D

P

�

þD

P

�

þDA2

Q
þQh2

2

subject to the constraints

nQ

D
� L

n� 1

8

<

:

ð5:17Þ

gTCSR ðn;QÞðaÞ¼
D ~A1RðaÞ

nQ
þ

~h1RðaÞQ
2

�

ðn�1Þ
�

1�D

P

�

þD

P

�

þDA2

Q
þQh2

2

subject to the constraints

nQ

D
� L

n� 1

8

<

:

ð5:18Þ

Hence when the costs are described using trapezoidal fuzzy

numbers, the defuzzified value of ~TCSðn;QÞ is as given

below.

dð ~TCSðn;QÞ; ~0Þ ¼
D ~M1

nQ
þ

~M2Q

2

�

ðn� 1Þ
�

1� D

P

�

þ D

P

�

þ DA2

Q
þ Qh2

2

subject to the constraints

nQ

D
� L

n� 1

8

<

:

ð5:19Þ

Thus the defuzzified value dð ~TCSðn;QÞ; ~0Þ is taken as the

estimate of fuzzy cost function (5.16), when the costs are

represented by trapezoidal numbers, and is denoted by

FC	
3 ðn;QÞ. As FC	

3 ðn;QÞ is a convex function of Q, the

optimal value of Q obtained from

oFC	
3 ðn;QÞ
oQ

¼ 0 ð5:20Þ

is

Q	�ðnÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2DðM1

n
þ A2Þ

M2½ðn� 1Þð1� D
P
Þ þ D

P
� þ h2

s

ð5:21Þ

6 Numerical example

To illustrate the applicability of the proposed quantity

discount strategy consider the following values of param-

eters in appropriate unit for the crisp model : D ¼ 10;000

units per year, P ¼ 25;000 units per year, p2 ¼ $30 per

unit, a ¼ 0:5, L ¼ 0:25 year, A1 ¼ $300 per order, A2 ¼
$100 per order, h1 ¼ $10, h2 ¼ $12. The solution to this

numerical example is obtained by using MATLAB soft-

ware. The optimal solution is TCB ¼ $4898:97,

TCMðm�Þ ¼ $5715:48, TCMðn�Þ ¼ $5589:10. The graph-

ical representation of the total cost curve of the system is

given in Fig. 3.

6.1 Sensitivity analysis

The sensitivity analysis is performed by changing the value

of the key parameters one at a time and keeping the

remaining parameters unchanged. The savings in percent-

age of the buyer and the manufacturer are respectively

SIPB ¼ 100aðTCMðm�Þ � TCMðn�ÞÞ=TCBðm�Þ and

SIPM1 = 100ð1� aÞðTCMðm�Þ � TCMðn�ÞÞ=TCMðm�Þ.
If the manufacturer does not share his saving with the

buyer, his savings is

SIPM2 = 100ðTCMðm�Þ � TCMðn�ÞÞ=TCMðm�Þ. Com-

putational results for different values of A2, h1, h2 are

specified in Table 1 and Table 2. Observations obtained

from the tables are as follows:

(i) Table 1 reveals that as the value of h2 i.e. the

buyer’s holding cost increases, the savings per-

centage of the buyer, manufacturer, and the

system increases. The coordination strategy is

significant and the manufacturer and the buyer can

be benefitted from the proposed coordination

strategy.

(ii) As the value of h1 increases, the savings percent-

age of the buyer, manufacturer, and the system

decreases and the coordination strategy is insignif-

icant in this case.
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(iii) It is observed from Table 2 that as the value of A2

and h1 increases, the savings percentage of the

buyer, manufacturer, and the system increases and

the coordination strategy is significant.

(iv) Table 2 also reveals that as the value of A2 and h2
increases, the savings percentage of the buyer,

manufacturer, and the system increases and the

coordination strategy is significant when h1 ¼$10

whereas the savings percentage of the buyer,

manufacturer, and the system decreases when

h1 ¼$15.

Figure 4 shows the effect of h1 and h2 on the

savings of the manufacturer, the buyer and the

system when A2 ¼ $100 and Fig. 5 shows the

effect of h1 and h2 on the savings of the

manufacturer, the buyer and the system when

A2 ¼ $200.

The impact of the level of fuzziness in the cost com-

ponents over the decision variables is analyzed by assign-

ing trapezoidal fuzzy numbers to the input parameters (A1,

h1) of the fuzzy models. Signed distance method is adopted

to defuzzify the values of the parameters and the corre-

sponding percentage difference from the crisp values are

denoted by (Â1, ĥ1,) and is given in Table 3. The optimal

total cost for the three fuzzy models are given in Table 4.

The following conclusions can drawn from Tables 5, 6, 7

and 8.

(i) As the value of the ordering cost and holding cost

of the manufacturer and the buyer increases, there

is a corresponding increase in the total cost of the

manufacturer when there is no coordination and

when there is coordination between the manufac-

turer and the buyer. The total cost of the system

also increases.

(ii) Keeping the ordering cost of the manufacturer Â1

fixed and as the value of the other parameters

increases, the total cost of the system increases.

The total cost of the manufacturer in a coordinat-

ing system is slightly less than that in a non-

coordinating system.

(iii) Keeping the ordering cost of the buyer A2 fixed

and as the value of the other parameters increases,

the total cost of the system in all the three cases

increases. The total cost of the manufacturer in a

coordinating system is less than that in a non-

coordinating system.

(iv) Keeping the holding cost of the manufacturer ĥ1
fixed and as the value of the other parameters

increases, the total cost of the optimization system

increases whereas it decreases in the other two

cases. The total cost of the manufacturer in a

coordinating system is less than that in a non-

coordinating system.

(v) Keeping the holding cost of the buyer h2 fixed and

as the value of the other parameters increases, the

total cost increases in all the three cases. The total

cost of the manufacturer in a coordinating system

is greater than that in a non-coordinating system.

Table 1 Effects of changes in the system parameters of the crisp

model when A2 ¼ 100

h1 h2 K�ðnÞ dðK�Þ SIPM1 SIPB SIPM2 SIPS

10 10 1.1180 0.0000929 0.5573 0.6966 1.1146 0.6912

11 1.1443 0.0001423 0.8255 0.9944 1.6511 0.9021

12 1.1677 0.0001967 1.1055 1.2897 2.2110 1.1905

13 1.1887 0.0002546 1.3883 1.5752 2.7766 1.4759

14 17 1.1709 0.0002423 1.4590 1.3312 2.2917 1.2316

15 1.1524 0.0001959 0.9181 1.0936 1.8362 0.9982

16 1.1348 0.0001557 0.7230 0.8825 1.4459 0.7948

17 1.1180 0.0001211 0.5573 0.6966 1.1146 0.6192

15 15 1.1180 0.0001138 0.5573 0.6966 1.1146 0.6192

16 1.1359 0.0001533 0.7343 0.8949 1.4685 0.8067

17 1.1524 0.0001959 0.9181 1.0936 1.8362 0.9982

18 1.1677 0.0002409 1.1055 1.2897 2.2110 1.1905

20 24 1.1677 0.0002782 1.1055 1.2897 2.2110 1.1905

21 1.1547 0.0002393 0.9447 1.1218 1.8894 1.0257

22 1.1421 0.0002041 0.8005 0.9673 1.6010 0.8760

23 1.1299 0.0001723 0.6717 0.8257 1.3435 0.7408

24 1.1180 0.0001439 0.5573 0.6966 1.1146 0.6192

Table 2 Effects of changes in the system parameters of the crisp

model when A2 ¼ 200

h1 h2 K�ðnÞ dðK�Þ SIPM1 SIPB SIPM2 SIPS

10 10 1.1336 0.0008922 0.2384 0.2086 0.4767 0.2225

11 1.1443 0.0001423 0.8255 0.9944 1.6511 0.9021

12 1.1677 0.0001967 1.1055 1.2897 2.2110 1.1905

13 1.1887 0.0002546 1.3883 1.5752 2.7766 1.4759

14 17 1.4005 0.0016000 0.1113 0.0875 0.2225 0.0980

15 1.3899 0.0015000 1.0711 0.8742 2.1422 0.9627

16 1.3795 0.0014000 1.9703 1.6660 3.9405 1.8054

17 1.3693 0.0013000 2.8148 2.4629 5.6295 2.6271

15 15 1.3693 0.0013000 2.8148 2.4629 5.6295 2.6271

16 1.3801 0.0014000 1.9157 1.6164 3.8315 1.7534

17 1.3899 0.0015000 1.0711 0.8742 2.1422 0.9627

18 1.3988 0.0016000 0.2757 0.2183 0.5515 0.2437

20 24 1.3988 0.0019000 0.2757 0.2183 0.5515 0.2437

21 1.3912 0.0018000 0.9546 0.7756 1.9091 0.8558

22 1.3838 0.0017000 1.6026 1.3355 3.2052 1.4569

23 1.3765 0.0017000 2.2220 1.8979 4.4440 2.0472

24 1.3693 0.0016000 2.8148 2.4629 5.6295 2.6271
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7 Conclusion

In this paper we have developed a two echelon supply

chain model consisting of a single manufacturer and a

single buyer for a fixed lifetime product under fuzzy

environment. The objective was to analyse the effective-

ness of quantity discount strategy in a single manufacturer

single buyer supply chain environment. Decentralized crisp

models with and without coordination were developed and

compared with the centralized model. This model also

reveals that the the manufacturer and the buyer gains the

most when their holding costs are equal. From the com-

putational results it is clear that the savings of the manu-

facturer, the buyer and the system is high when the holding

cost of the buyer increases. In the realistic environment,

certain uncertainties in cost components will affect the

Fig. 4 Effects of h1 and h2 on the optimal solution when A2 ¼ $100. a Effects of h1 on the optimal solution when h2 ¼ $17. b Effects of h2 on

the optimal solution when h1 ¼ $15

Fig. 5 Effects of h1 and h2 on the optimal solution when A2 ¼ $200. a Effects of h1 on the optimal solution when h2 ¼ $24. b Effects of h2 on

the optimal solution when h1 ¼ $15

Table 3 Fuzzy trapezoidal

values for the input parameters

of the model

~A1 dð ~A1; ~0Þ Â1
~h1 dð ~h1; ~0Þ ĥ1

(200, 250, 440, 470) 340.0 13.33 (2, 6, 16, 17) 10.25 2.5

(230, 270, 500, 510) 377.5 25.83 (5, 7, 14, 16) 10.50 5.0

(240, 260, 500, 520) 380.0 26.67 (4, 6, 15, 18) 10.75 7.5

(240, 260, 500, 520) 380.0 26.67 (3, 8, 15, 18) 11.0 10.0
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optimal decisions. In such situations fuzzy methodologies

play a vital role to find the solution suitable to the real

world. The impact of the level of fuzziness in the cost

components over the decision variables is analyzed by

developing fuzzy models under three scenarios in which

trapezoidal fuzzy numbers are assigned to the input

parameters. The proposed model is best suited for manu-

facturing systems which produces fixed lifetime products

and faces uncertainities in the cost components. A future

research direction might be to extend this study to other

demand patterns, and to analyse the effectiveness of other

coordination mechanism for fixed lifetime products. In

addition, shortages with complete or partial backlogging

could also be considered. This research can also be

extended to multi-echelon supply chain systems.
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Appendix

Preliminaries

The fuzzy set theory was introduced to deal with problems

in which fuzzy phenomena exist. In a universe of discourse

X, a fuzzy subset ~a of X is defined by the membership

function l~aðxÞ which maps each element x in X to a real

number in the interval [0, 1]. The function value of l~aðxÞ
denotes the grade of membership.

Definition 1 Fuzzy normal (Vijayan and Kumaran 2008)

A fuzzy set is normal if the largest grade obtained by any

element in that set is 1.

Definition 2 Fuzzy covex (Vijayan and Kumaran 2008) A

fuzzy set ~a on X is convex iff l~aðkx1 þ ð1� kÞx2Þ�
minðl~aðx1Þ; l~aðx2ÞÞ

Definition 3 Fuzzy point (Pu and Liu 1980) Let ~a be a

fuzzy set on R = ð�1;1Þ. It is called a fuzzy point if its

membership function is

l~aðxÞ ¼
1; x ¼ a

0; x 6¼ a

	

ð8:1Þ

Definition 4 Fuzzy number (Vijayan and Kumaran 2008)

A fuzzy number is a fuzzy subset of the real line which is

both normal and convex. For a fuzzy number ~A, its mem-

bership function is denoted by

l~aðxÞ ¼
lðxÞ; x\m

1; m� x� n

uðxÞ; x[ n

8

>

<

>

:

ð8:2Þ

where l(x) is upper semi continuous, strictly increasing for

x\m and there exist m1\m such that lðxÞ ¼ 0 for x�m1,

u(x) is continuous, strictly decreasing function for x[ n

and there exist n1 � n such that uðxÞ ¼ 0 for x� n1, l(x) and

u(x) are called left and right reference functions

respectively.

Table 4 Optimal total cost for the fuzzy models

Â1
A2 ĥ1 h2 FC	

1 ðmÞ FC	
2 ðmÞ FC	

3 ðn;QÞ

13.33 100 2.5 12 530.64 529.26 5428.24

25.83 100 5.0 12 1040.95 1040.95 5935.69

26.67 100 7.5 12 1265.65 1265.65 6164.50

26.67 100 10 12 1469.78 1467.68 6366.66

Table 5 Optimal total cost for the fuzzy models when Â1 is fixed

Â1
A2 ĥ1 h2 FC	

1 ðmÞ FC	
2 ðmÞ FC	

3 ðn;QÞ

25.83 150 5.0 14 1020.90 1020.30 7501.04

200 7.5 16 1266.60 1263.60 9263.66

250 10.0 18 1544.18 1529.75 11,016.59

Table 6 Optimal total cost for the fuzzy models when A2 is fixed

A2 Â1 ĥ1 h2 FC	
1 ðmÞ FC	

2 ðmÞ FC	
3 ðn;QÞ

200 25.83 5.0 14 1017.76 1017.60 8500.92

26.67 7.5 16 1283.40 1280.87 9280.87

26.67 10.0 18 1508.57 1501.45 9986.73

Table 7 Optimal total cost for the fuzzy models when ĥ1 is fixed

ĥ1 Â1 A2 h2 FC	
1 ðmÞ FC	

2 ðmÞ FC	
3 ðn;QÞ

2.5 25.83 150 14 789.45 782.11 7262.85

26.67 200 16 783.40 778.83 8778.83

26.67 250 18 769.55 766.68 10,253.52

Table 8 Optimal total cost for the fuzzy models when h2 is fixed

ĥ1 Â1 A2 h2 FC	
1 ðmÞ FC	

2 ðmÞ FC	
3 ðn;QÞ

14 13.33 150 5.0 750.87 784.75 7229.50

25.83 200 7.5 1285.02 1279.23 8762.55

26.67 250 10.0 1567.99 1613.44 9980.04
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Definition 5 Trapezoidal fuzzy number (Zimmerman

1991) The fuzzy number ~A is said to be a trapezoidal fuzzy

number if it is fully determined by ( a1, a2, a3, a4 ) of crisp

numbers such that a1\a2\a3\a4, whose membership

function, representing a trapezoid, can be denoted by

l ~AðxÞ ¼

x� a1

a2 � a1
; a1 � x� a2

1; a2 � x� a3
x� a4

a3 � a4
; a3 � x� a4

0; otherwise

8

>

>

>

>

>

<

>

>

>

>

>

:

ð8:3Þ

where a1; a2; a3 and a4 are the lowerlimit, lower mode,

upper mode and upper limit respectively of the fuzzy

number ~A. The interval [a1; a4] is called the support of the

fuzzy number and it gives the range of all possible values

of ~A that are least marginally possible or plausible. The

interval [a2; a3] corresponds to the core of fuzzy number

and gives the range of most plausible values. The intervals

[a1; a2] and [a3; a4] are called penumbra of the fuzzy

number ~A.

Let ~A1 ¼ ða11; a12; a13; a14Þ, ~A2 ¼ ða21; a22; a23; a24Þ be

two trapezoidal fuzzy numbers, then ~A1 þ ~A2 ¼ ða11 þ a21;

a12 þ a22; a13 þ a23; a14 þ a24Þ and for all b� 0,

b ~A1 ¼ ðba11; ba12; ba13; ba14Þ.
The set ~AðaÞ ¼ fx : l ~AðxÞ� ag, where ae½0; 1� is called

the a cut of ~A. ~AðaÞ is a nonempty bounded closed interval

contained in the set of real numbers and it can be denoted

by ~AðaÞ ¼ ½~ALðaÞ; ~ARðaÞ�. ~ALðaÞ and ~ARðaÞ are respectively
the left and right limits of ~AðaÞ and are usually known as

the left and right a cuts of ~A. ~ALðaÞ ¼ a1 þ ða2 � a1Þa and
~ARðaÞ ¼ a4 � ða4 � a3Þa for a trapezoidal number
~A ¼ ða1; a2; a3; a4Þ.

Definition 6 Level a Fuzzy interval (Chiang et al. 2005)

Let [a, b; a] be a fuzzy set on R ¼ ð�1;1Þ. It is called a

level a fuzzy interval, 0� a� 1, a\b, if its membership

function is

l½ a; b; a �ðxÞ ¼
a; if a� x� b

0; otherwise

	

ð8:4Þ

Signed distance method (Yao and Wu 2000)

The signed distance between the real numbers a and 0,

denoted by d0ða; 0Þ is given by d0ða; 0Þ ¼ a. Hence the

signed distance of ~ALðaÞ and ~ARðaÞ measured from 0 are

d0ð~ALðaÞ; 0Þ ¼ ~ALðaÞ and d0ð~ARðaÞ; 0Þ ¼ ~ARðaÞ.
The signed distance of the interval (~ALðaÞ; ~ARðaÞ)

measured from the origin 0 by

d0ðð~ALðaÞ; ~ARðaÞÞ; 0Þ ¼
1

2
½d0ð~ALðaÞ; 0Þ þ d0ð~ARðaÞ�

¼ 1

2
ð~ALðaÞ þ ~ARðaÞÞ

ð8:5Þ

where ~ALðaÞ and ~ALðaÞ exist and are integrable for ae½0; 1�.
For each a e ½0; 1�, the crisp interval [~ALðaÞ; ~ARðaÞ] and

the level a fuzzy interval [[~ALðaÞ; ~ARðaÞ]; a] are in one to

one correspondence. The signed distance from

[~ALðaÞ; ~ARðaÞ] to ~0 (where ~0 is the 1 level fuzzy point

which maps to the origin) is

ð½~ALðaÞ; ~ARðaÞ; a�; ~0Þ ¼ d0ðð~ALðaÞ; ~ARðaÞÞ; 0Þ ¼
1

2
ð~ALðaÞ þ ~ARðaÞÞ

ð8:6Þ

The signed distance of ~A measured from 0 is defined as

dð~A; ~0Þ ¼ 1

2

Z 1

0

ð~ALðaÞ þ ~ARðaÞÞda ð8:7Þ

Lemma 1 (Linearity property of the operator d (Vijayan

and Kumaran 2008))

Let ~Ai; i ¼ 1; 2; . . .N be N fuzzy numbers and bi; i ¼
1; 2; . . .N are real crisp constants. Then

d
X

N

i¼1

bi ~Ai; ~0

 !

¼
X

N

i¼1

bidð~Ai; ~0Þ ð8:8Þ

Proof By definition,

dð
X

N

i¼1

bi ~Ai; ~0Þ ¼
1

2

Z 1

0

X

N

i¼1

bi ~Ai

 !

L

ðaÞ þ
X

N

i¼1

bi ~Ai

 !

R

ðaÞ
 !

da

¼ 1

2

Z 1

0

X

N

i¼1

bi ~AiLðaÞ þ
X

N

i¼1

bi ~AiRðaÞ
 !

da

¼ 1

2

Z 1

0

X

N

i¼1

bið~AiLðaÞ þ ~AiRðaÞÞda

¼
X

N

i¼1

bi
1

2

Z 1

0

ð~AiLðaÞ þ ~AiRðaÞÞda

¼
X

N

i¼1

bidð~Ai; ~0Þ

where ~AiLðaÞ and ~AiLðaÞ are respectively the left and right a
cuts of the fuzzy number ~Ai. Hence the lemma is proved.h
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