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Abstract: In the field of the DNA computing, splicing system was proposed
by Tom Head in which the splicing operation is used. Various models
have been studied with mate operation working on strings. The operations
mate and drip considered in membrane computing resemble the operations
cut and recombination well known from the DNA computing. Recently, a
new generative model called array P system with mate operation has been
introduced. In this paper, we incorporate the t-communicating and permitting
features in the rules of array P system with mate operation and develop the
generating picture languages consisting of picture arrays. This enables us to
reduce the number of membranes used in the existing array P system models.
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1 Introduction

DNA computing was introduced more than 20th years ago, when Tom Head formalised
the operation of splicing, well known from biology as an operation on DNA strands
(Head, 1987). Denninghoff and Pradalier (1989) encoded the range of Turing machines
using iterated splicing on multisets. The splicing operation then mainly was used as a
basic tool for building a generative mechanism called a splicing system or H system as
formalised by Gheorghe Paun.

A new kind of generative mechanism was proposed by Rudolf and Marion (2007)
with mate and drip operations working on strings. In P systems and tissue P systems the
objects are placed inside the membranes. In the variant of membrane systems introduced
by Cardelli (2005), the objects are placed on the membranes. The computations in
these models also called brane calculus are based on specific ways to divide and fuse
membranes and to redistribute the objects on the membranes, the rules usually being
applied in a sequential way in contrast to the (maximal) parallel way of applying rules in
P systems (Busi, 2005). Various attempts have already been made to combine different
models from the area of P systems and of brane calculi (Cardelli and Paun, 2006).
Following this research line by investigating tissue P systems with the brane operations
mate and drip by Rudolf and Marion (2007), completeness results were obtained both
for symbol objects as well as for string objects. It is of interest to note that systems
using mate operation are Turing complete and they can compute all Turing computable
sets of numbers.

On the other hand, regulating rewriting in a grammar by permitting or forbidding
the application of a rule based on the presence or absence of a set of symbols is known
in formal language theory (Dassow and Paun, 1989). Picture grammars that use this
feature of permitting or forbidding symbols have also been introduced by Ewert and
van der Walt (1999).
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We incorporate the t-communicating and permitting features in the rules of array P
system introduced by Subramanian et al. (2013) with mate operation and develop the
generation of picture languages consisting of picture arrays. This enables us to reduce
the number of membranes used in the system by comparing to the existing array P
system models.

2 Preliminaries

2.1 Array P system with mate operation (Chandra et al., 2016)

An array P system with mate operation is a construct.

Π = (V, VT , #, µ,A1, A2, . . . , Am, R1, R2, . . . , Rm, i0)

where V is a finite set of symbols, VT is a set of terminal symbols, VT ⊆ V, # is the
blank symbol, # /∈ V , µ is a membrane structure with m membranes injectively labeled
by 1, 2, . . . ,m, A1, A2, . . . , Am are sequence of sets of axioms where Ai ⊆ V ∗∗, 1 ≤
i ≤ m, describing the initial contents of the membranes, R1, R2, . . . , Rm are finite set of
tables containing mate rules associated with the regions of µ, i0 is the output membrane.

A computation in Π starts with the initial configuration described by Ai. It is
performed by applying suitable mate rules from R in a non-deterministic, maximally
parallel way, thereby passing from one configuration of the system to the next one. A
sequence of transitions constitute a computation.

The mate column operation on a membrane is defined on two arrays X , Y of order
m× n and the rule Ri from the finite set of mate rule R = (R1, R2, . . . Rm) as follows:

{{(P | A,B | Q;Z), tar}, {{p ̸ c a $c b ̸ c q; z}, {ab → z}}}

where X = SΦPΦA and Y = BΦQΦW ;X,Y, Z ⊆ V ∗∗. Mate column operation is
done to the elements of arrays X and Y, taking the sub arrays starting from the first row
till the end of the row. The sub arrays s, p, a, b, q, w and z of S, P,A,B,Q,W and Z
are respectively in the order p× q, 1 ≤ p ≤ m and 1 ≤ q ≤ n such that the number of
rows are equal and the number of columns may differ. {{p ̸ c a $c b ̸ c q ; z}, {ab → z}}
fuses the two arrays carrying (sΦ pΦ a) and (bΦ q Φw ) into an array which has the
form (sΦ pΦ z Φ q Φw ) where (ab) is replaced by (z). The remaining sub arrays are
taken as they are.

The mate row operation on a membrane is defined on two arrays X , Y of order
m× n and the rule Ri from the finite set of mate rule R = (R1, R2, . . . Rm) as follows:

{{(P | A,B | Q;Z), tar}, {{p ̸ c a $r b ̸ c q; z}, {ab → z}}}

where X = SΘPΘA and Y = BΘQΘW ;X,Y, Z ⊆ V ∗∗. Mate row operation is done
to the elements of arrays X and Y, taking the sub arrays starting from the first column
till the end of the column. The sub arrays s, p, a, b, q, w and z of S, P,A,B,Q,W and
Z are respectively in the order p× q, 1 ≤ p ≤ m and 1 ≤ q ≤ n such that the number of
columns are equal and the number of rows may differ. {{p ̸ c a $r b ̸ c q ; z}, {ab → z}}
fuses the two arrays carrying (sΘ pΘ a) and (bΘ q Θw ) into an array which has the
form (sΘ pΘ z Θ q Θw ) where (ab) is replaced by (z). The remaining sub arrays are
taken as they are.
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The generated array is sent to the region indicated by tar. If tar = here then the
generated array remains in the same membrane where it is generated. If tar = out then
the generated array is moved to the region immediately outside the membrane. If tar =
in then the generated array is sent to the region immediately inside the membrane.

A computation is successful only if:

1 it halts (which is the case no rule can be applied any more)

2 the output array in the halting configuration is the required array.

The set of all such arrays computed by a system Π is denoted by MAL(Π). The family
of all array languages generated by systems MAL(Π), with at most m membranes with
mate operation is denoted by APm(mate).

2.2 t-communicating array P system (Subramanian et al., 2009)

A t-communicating array P system of degree m ≥ 1 and of type tin (tEAPSm(tin,
CF )) is a construct.

Π = (V, T, #, µ, F1, . . . , Fm, R1, . . . , Rm, io)

where the components V, T, #, µ, F1, . . . , Fm, io are as in an array rewriting P system
(Ceterchi et al., 2003) and the rules in the sets R1, . . . , Rm are CF array rewriting
rules of the form A → B. The computation is done in the usual way of starting with the
initial arrays (if any) in the regions. The arrays are communicated among the regions in
the following manner. If any array-rewriting rule with target indication out, is applied
to an array then the resulting array is sent to its immediately direct upper region. If
any array-rewriting rule has no target indication, then the array to which it is applied
remains in the same region, if it can be further rewritten there. If no rule can be applied
to it in that region, then it is sent to the immediately direct inner region, if one such
region exists. In other words the t-mode or maximal derivation performed enforces the
in target command. If the membrane is elementary, the rewritten array remains there.
Note that the system does not have rules with target indication in. The result of a
computation is the set of arrays over T collected in the output elementary membrane in
the halting configuration.

The family of all array languages generated by a t-communicating array P system
of type tin, Π as above, with at most m membranes with rules of type α ∈ {REG,CF}
is denoted by tEAPm(tin, α).

3 Features on mate array P system

We now introduce the notion of a mate array P system with permitting features
associated with the mate rules in the regions.
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3.1 Permitting mate column/row operation

Permitting mate column/row operation is defined as in array P system with mate
operation (Chandra et al., 2016) but the permitting mate column/row rules will be of
the form

{{(P | A,B | Q;Z), tar}, {{p ̸ c a $c b ̸ c q; z}, {ab → z, per}}},

{{(P | A,B | Q;Z), tar}, {{p ̸ c a $r b ̸ c q; z}, {ab → z, per}}}

provided per ⊆ {p, q}. If the array satisfies the per condition then the permitting mate
column/row operation will be done. If per = ϕ then we omit mentioning it in the rule.

3.2 Permitting mate array P system

A permitting mate array P system (of degree m ≥ 1) is a construct:

Π = (V, VT , #, µ,A1, A2, . . . , Am, R1, R2, . . . , Rm, i0)

where

• V is a finite set of symbols

• VT is a set of terminal symbols, VT ⊆ V

• # is the blank symbol, # /∈ V

• µ is a membrane structure with m membranes injectively labeled by 1, 2, . . . ,m

• A1, A2, . . . , Am are sequence of sets of axioms where Ai ⊆ V ∗∗, 1 ≤ i ≤ m,
describing the initial contents of the membranes.

• R1, R2, . . . , Rm are finite set of tables containing permitting mate rules associated
with the regions of µ and per ⊆ V ∗∗

• i0 is the output membrane.

A computation in Π starts with the initial configuration described by Ai. It is performed
by applying suitable permitting mate rules from R in a non-deterministic, maximally
parallel way, thereby passing from one configuration of the system to the next one. A
sequence of transitions constitutes a computation. The mate column/row operation is
done as in array P system with mate operation but the fusion of two arrays into a single
array is done only per ⊆ {p, q}.

The generated array in the form SΦPΦZΦQΦW or SΘPΘZΘQΘW is sent to the
region indicated by tar. If tar = here then the generated array remains in the same
membrane where it is generated. If tar = out then the generated array is moved to the
region immediately outside the membrane. If tar = in then the generated array is sent
to the region immediately inside the membrane.
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A computation is successful only if:

1 It halts by reaching a configuration where no rule can be applied any more.

2 The output array in the halting configuration is the required array.

The set of all such arrays computed by a system Π is denoted by pMAL(Π). The family
of all array languages generated by systems pMAL(Π), with at most m membranes
with mate operation is denoted by pAPm(mate).

3.3 t-communicating permitting mate array P system

A t-communicating permitting mate array P system of type tin and of degree m ≥
1, is the same as a permitting mate array P system of degree m ≥ 1. Moreover,
application of the rules to arrays in the region is done as in a permitting mate array
P system and the communication of sending the generated arrays from one region to
another is done as in the t-communicating array P system of type tin. As usual, a
successful computation is a halting computation with the arrays collected in the output
membrane constituting the language generated. The family of picture array languages
generated by t-communicating permitting mate array P system of type tin is denoted
by tpAPm(tin,mate).

3.4 Example

Consider the permitting mate array P system.

Π1 =

{b, x}, {b, x}, #, [1[2]2]1],

x b x
x x x
x b x

 , ϕ, (R1, R2), 2


where

R1 =





x b . . . b
...
... . . .

...
x b . . . b
x x . . . x
x b . . . b
...
... . . .

...
x b . . . b

x
...
x
x
x
...
x

,

x b . . . b
...
... . . .

...
x b . . . b
x x . . . x
x b . . . b
...
... . . .

...
x b . . . b

x
...
x
x
x
...
x

;

b b
...
...

b b
x x
b b
...
...

b b

, (in)


,


{{

b ̸ c x $c b ̸ c x ; (b b)
}
,
{
(x x b . . . b) → (b b), (x b, x)

}}
,{{

x ̸ c x $c x ̸ c x ; (x x)
}
,
{
(x x x . . . x) → (x x), (x x, x)

}}




,
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R2 =





x b . . . b x
...
...
...

...
...

x b . . . b x
x x . . . x x
x b . . . b x
...
...
...

...
...

x b . . . b x

,

x b . . . b x
...
...

...
...
...

x b . . . b x
x x . . . x x

x b . . . b x
...
...

...
...
...

x b . . . b x

;
x b . . . b x
x x . . . x x
x b . . . b x


,





x ̸ c x $r x ̸ c x ;

x
x
x

 ,





x
x
...
x
...
x
x


→

x
x
x

 ,
(
x, x

)



,



b ̸ c x $r x ̸ c b ;

 b
x
b

 ,





x
b
...
b
...
b
x


→

b
x
b

 ,
(
b, b

)







A computation in Π1 starts with the initial array

x b x
x x x
x b x

in region 1, but the

region 2 has no initial array. If the permitting mate rule R1 is applied with the
array to itself in region 1, the rules{{b ̸ c x $c b ̸ c x ; (b b},

{
(x x b . . . b) → (b b)

}
}

and {{x ̸ c x $c x ̸ c x ; (x x},
{
(x x x . . . x) → (x x)

}
} are applicable as the permitting

arrays (xb, x), (xx, x) are present. The generated array is moved to region 2, due to the
target indication in. In region 2, the permitting mate rule R2 is applied as the permitting
arrays (x, x) and (b, b) are present. The computation is reaching to a halt yielding a H
shaped array over {x}. The picture language generated by Π1 consists of H shapes with
the horizontal line at the middle of the vertical ones as in Figure 1 where ‘b’ stands for
empty.

Figure 1 Array describing pattern H

x b b b x
x b b b x
x x x x x
x b b b x
x b b b x
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A vertical bar ‘ | ’ and a horizontal bar ‘− ’ are used to indicate the place where cutting
is done.

3.5 Theorem

A permitting mate array P system generates I shaped arrays with equal arms over {a}.

Proof: Consider the permitting mate array P system

Π2 =

{a, x}, {a, x}, #, [1[2]2]1],

a a a
x a x
a a a

 , ϕ, (R1, R2), 2


where

R1 =





a . . . a
x . . . x
...

...
...

x . . . x
a . . . a

a a . . . a
a x . . . x
...
...

...
a x . . . x
a a . . . a

,

a . . . a a
x . . . x a
...

...
...

x . . . x a
a . . . a a

a . . . a
x . . . x
...

...
...

x . . . x
a . . . a

;

a a a
x a x
...
...
...

x a x
a a a

, (in)


,


{
{a ̸ c a $c a ̸ c a ; (a a a)

}
,
{
(a a . . . a . . . a a) → (a a a), (a, a)}

}
,{{

x ̸ c a $c a ̸ c x ; (x a x)
}
,
{
(a x . . . x . . . x a) → (x a x), (x, x)

}}



,

R2 =





a . . . a a . . . a
x . . . a x . . . x
...
...

...
...
...

...
x . . . a x . . . x
a . . . a x . . . a

,

a . . . a a . . . a
x . . . a x . . . x
...

...
...
...

...
...

x . . . a x . . . x
a . . . a a . . . a

;
x . . . a x . . . x
x . . . a x . . . x


,




{
a ̸ c x $r a ̸ c x ;

(
x
x

)}
,




x
...
x
a
a

 →
(
x
x

)
,

(
a,

(
x
a

))



,


{
a ̸ c a $r a ̸ c a ;

(
a
a

)}
,




a
...
a
a
a

 →
(
a
a

)
,

(
a,

(
a
a

))







The picture language generated by Π2 consists of I shapes as in Figure 2 where ‘x’
stands for empty.
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Figure 2 Array describing pattern I

a a a a a
x x a x x
x x a x x
x x a x x
a a a a a

3.6 Theorem

Ss ∈ tpAP2(tin,mate).

Proof: Consider the t-communicating permitting mate array P system of type tin.

Π3 =

(
{a, x}, {a}, #, [1[2]2]1],

{
a a
a a

}
, ϕ, (R1, R2), 2

)
where

R1 =




a . . . a
...
...
...

a . . . a

a
...
a

,

a . . . a
...
...
...

a . . . a

a
...
a

;

a
...
a

 ,

{ {
a ̸ c a $c a ̸ c a ;(a)

}
,
{
(a a . . . a) → (a), (a, a))

} }


,

R2 =




a . . . a
a . . . a
...
...

...
a . . . a

,

a . . . a
a . . . a
...
...
...

a . . . a

; a . . . a

 ,


{
a ̸ c a $r a ̸ c a ;(a)

}
,



a
...
a
a

 → (a),
(
a, a

)




The computation starts with the initial array in region 1. The permitting mate rule R1 is
applied with the array to itself in region 1. The application of the rules throughout the
computation is guided by the permitting array. Due to the type tin of the system, the
generated array moves to region 2. In region 2, the permitting mate rule R2 is applied.
As a result, the array of solid square shape is obtained.

The picture language generated by Π3 consists of solid squares of a’s as in Figure 3.

Figure 3 Solid square of a′s

a a a a a
a a a a a
a a a a a
a a a a a
a a a a a
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Remark: We note that the t-communicating array P system with context-free array
rewriting rules generating the set of solid squares of a’s given by Subramanian et al.
(2009) involves four membranes whereas two membranes are enough when the system
is endowed with additional permitting mate operation.

4 Generative power

We determine the generative power of the Permitting mate array P system by comparing
with other models.

Figure 4 Array describing pattern T

a a a a a
x x a x x
x x a x x
x x a x x
x x a x x

4.1 Theorem

1 pAP2(mate)− EAP2(REG) ̸= ϕ

2 pAP2(mate)−AREG ̸= ϕ

Proof: The statement 1 can be seen as follows: The picture language generated by Π4

consisting of T shaped arrays with equal arms is in the family pAP2(mate) as given
below. This picture language Π4 cannot be generated by a regular array grammar with
two membranes (Ceterchi et al., 2003). But the following pAP2(mate) generates the
language Π4 with exactly two membranes. Consider the permitting mate array P system.

Π4 =

{a, x}, {a, x}, #, [1[2]2]1],

a a a
x a x
x a x

 , ϕ, (R1, R2), 2


where

R1 =




a . . . a

x . . . x

...
...

...
x . . . x

a a . . . a

a x . . . x

...
...

...
...

a x . . . x

,

a . . . a

x . . . a

...
...

...
x . . . a

a . . . a

x . . . x

...
...

...
x . . . x

;

a a a

x a x

...
...
...

x a x

, (in)


,


{{

a ̸ c a $c a ̸ c a ; (a a a )
}
,
{
(a a . . . a a . . . a a ) → (a a a ), (a, a ))

}}
,{{

x ̸ c a $c a ̸ c x ; (x a x )
}
,
{
(a x . . . x x . . . x a ) → (x a x ), (x, x )

}}



,
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R2 =




a . . . a a . . . a
x . . . a x . . . x
...
...

...
...
...

...
x . . . a x . . . x

,

a . . . a a . . . a
x . . . a x . . . x
...

...
...
...

...
...

x . . . a x . . . x

;
x . . . a x . . . x
x . . . a x . . . x

 ,




{
a ̸ c x $r a ̸ c x ;

(
x
x

)}
,



x
...
x
a

 →
(
x
x

)
,

(
a,

(
x
x

))
 ,


{
a ̸ c a $r a ̸ c a ;

(
a
a

)}
,



a
...
a
a

 →
(
a
a

)
,

(
a,

(
a
a

))





The picture language generated by Π4 consists of T shapes as in Figure 4 where ‘x’
stands for empty.

The statement 2 is due to the fact that no regular array grammar by the nature of its
rules that can ensure the arms of equal length. In fact the regular array grammar rules
cannot generate two arms together.

4.2 Theorem

pAP2(mate) ∩ PCDCFIAGS ̸= ϕ.

Proof: Consider the permitting mate array P system.

Π5 =

(
{0, 1}, {0, 1}, #, [1[2]2]1],

{
1 0
1 1

}
, ϕ, (R1, R2), 2

)
where

R1 =





1
...
1
...
1

0 . . . 0
... . . .

...
0 . . . 0
... . . .

...
1 . . . 1

,

1
...
1
...
1

0 . . . 0
... . . .

...
0 . . . 0
... . . .

...
1 . . . 1

;

0
...
0
...
1

, (in)


,


{{

1 ̸ c 0 $c 1 ̸ c 0; (0)
}
,
{
(0 . . . 0 1) → (0), (1, 0))

}}
,{{

1 ̸ c 1 $c 1 ̸ c 1; (1)
}
,
{
(1 . . . 1 1) → (1), (1, 1)

}}




,



220 M.N. Kalyani et al.

R2 =




1 0 . . . 0
...
...
...
...

1 0 . . . 0
1 1 . . . 1

,

1 0 . . . 0
...
...
...
...

1 0 . . . 0
1 1 . . . 1

; 1 0 . . . 0

,




{
1 ̸ c 1 $r 1 ̸ c 1;

(
1
)}

,



1
1
...
1

 →
(
1
)
,
(
1, 1

)

 ,


{
0 ̸ c 1 $r 0 ̸ c 1;

(
0
)}

,



1
0
...
0

 →
(
0
)
,
(
0, 0

)






The picture language generated by Π5 consists of L shapes as in Figure 5 where
‘0’ stands for empty. This language also can be generated by PCDCFIAGS
(Sheena Christy and Thomas, 2015).

Figure 5 Array describing pattern L

1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 1 1 1 1

4.3 Theorem

1 tpAP1(tin,mate) ⊂ tpAP2(tin,mate).

2 CD2(CFIA, t) ⊂ tpAP2(tin,mate).

Proof: The proper inclusion in 1 can be seen as follows: the inclusion is proper, since
the picture of shape I with equal arms can be generated by tpAP2(tin,mate), as in
Figure 2. But it cannot be generated by t-communicating permitting mate rules in just
a single membrane, as the rules cannot maintain equal growth.

The proper inclusion in two can also be proved similarly. The iso-picture of shape
L with equal arms can be generated by CD3(CFIA, t) (Csuhaj-Varju et al., 1994). But
we can generate pictures of shape L with equal arms by using tpAP2(tin,mate), as in
Figure 5.

5 Conclusions

We have considered the features of permitting mate operation in the rules and
t-communication mode in the regions of the permitting mate array P system. Specific
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patterns like characters are generated by the array P system with permitting mate rules.
It is remarkable to note that the number of membranes are reduced which increases
the generative power of pAPm(mate). The generative power is determined with other
models of picture description. It is worth examining the boundedness of the system and
the set properties.
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