COMPUTER ORIENTED NUMERICAL METHODS - ALGEBRAIC AND TRANSCENDENTAL FUNCTION

J.JANSI PREMA M.Sc.,B.ed., M.Phil.,
DEPARTMENT OF COMPUTER SCIENCE,
JEYARAJ ANNAPACKIAM COLLEGE FOR WOMEN (AUTONOMOUS),
PERIAKUALM.

Introduction

- There are two types of functions: (i) Algebraic function and (ii) Transcendental function
- An algebraic function is informally a function that satisfies a polynomial equation
- A function which is not algebraic is called a **transcendental** function.
- The values of x which satisfy the equation f(x) = 0 are called **roots** of f(x).
- If f(x) is quadratic, cubic or bi-quadratic expression, then algebraic formulae are available for getting the solution.
- If f(x) is a higher degree polynomial or transcendental function then algebraic methods are not available.

BISECTION METHOD

- Consider a continuous function f(x).
- Numbers a < b such that f(a) and f(b) have opposite signs.
- Let f(a) be negative and f(b) be positive for [a, b].
- Then there exists at least one point(root), say x, a < x < b such that f(x) = 0.
- Now according to Bisection method, bisect the interval [a, b], $x_1 = \frac{a+b}{2}(a < x_1 < b)$.
- If $f(x_1) = 0$ then x_1 be the root of the given equation.
- Otherwise the root lies between x_1 and b if $f(x_1) < 0$.
- OR the root lies between a and x_1 if $f(x_1) > 0$.
- Then again bisect this interval to get next point x_2 .
- Repeat the above procedure to generate x_1, x_2, \ldots till the root upto desired accuracy is obtained.

BISECTION METHOD

Characteristics:

- This method always slowly converge to a root.
- 2 It gives only one root at a time on the selection of small interval near the root.
- In case of the multiple roots of an equation, other initial interval can be chosen.
- Smallest interval must be selected to obtain immediate convergence to the root, .

BISECTION METHOD- EXAMPLE

Ex. Find real root of $x^3 - x - 1 = 0$ correct upto three decimal places using Bisection method

BISECTION METHOD- EXAMPLE

Sol. Let
$$f(x) = x^3 - x - 1 = 0$$

 $f(0) = -1 < 0$
 $f(1) = -1 < 0$
 $f(2) = 5 > 0$

 \therefore since f(x) is continuous function there must be a root in the lying in the interval (1,2)

Now according to Bisection method, the next approximation is obtained by taking the midpoint of (1, 2)

$$c = \frac{1+2}{2} = 1.5, f(1.5) =$$

No. of	a	b	$c = \frac{a+b}{2}$	f(c)
iterations	(f(a) < 0)	(f(b) > 0)	2	(<0,>0)
1	1	2	1.5	-

BISECTION METHOD- EXAMPLE

Ex. Find real root of $x^2 - lnx - 12 = 0$ correct upto three decimal places using Bisection method

NEWTON-RAPHSON METHOD (N-R METHOD)

Graphical derivation of the Method:

- Consider the portion of the graph y = f(x) which crosses X - axis at R corresponding to the equation f(x) = 0.
- Let B be the point on the curve corresponding to the initial guess x_0 at A.
- The tangent at B cuts the X axis at C which gives first approximation x_1 . Thus $AB = f(x_0)$ and $AC = x_0 - x_1$
- Now $\angle ACB = \alpha$, $tan\alpha = \frac{AB}{AC}$

$$\therefore f'(x_0) = \frac{f(x_0)}{x_0 - x_1}$$

$$\therefore f'(x_0) = \frac{f(x_0)}{x_0 - x_1}$$

$$\therefore x_0 - x_1 = \frac{f(x_0)}{f'(x_0)} \Rightarrow x_0 - \frac{f(x_0)}{f'(x_0)} = x_1$$

$$\therefore x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

• In general
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
; where $n = 0, 1, 2, 3, ...$

SECANT METHOD

- In N-R method two functions f and f' are required to be evaluate per step.
- Also it requires to evaluate derivative of f and sometimes it is very complicated to evaluate f'.
- Often it requires a very good initial guess.
- To overcome these drawbacks, the derivative of f' of the function f is approximated as $f'(x_n) = \frac{f(x_{n-1}) f(x_n)}{x_{n-1} x_n}$
- Therefore formula of N-R method becomes

$$x_{n+1} = x_n - \frac{f(x_n)}{\left(\frac{f(x_{n-1}) - f(x_n)}{x_{n-1} - x_n}\right)}$$

$$\therefore x_{n+1} = x_n - f(x_n) \frac{x_{n-1} - x_n}{f(x_{n-1}) - f(x_n)}$$
where $n = 1, 2, 3, \dots, f(x_{n-1}) \neq f(x_n)$

SECANT METHOD

General Features:

- The secant method is an open method and may not converge.
- It requires fewer function evaluations.
- In some problems the secant method will work when Newton's method does not and vice-versa.
- The method is usually a bit slower than Newton's method. It is more rapidly convergent than the bisection method.
- This method does not require use of the derivative of the function.
- This method requires only one function evaluation per iteration.

THANK YOU

