HALF-LIFE TIME OF THE REACTION AND ZERO ORDER REACTION

S. Maria Esther Assistant Professor on Chemistry PG and Research Center of Chemistry

DEFINITION

The required time for the reaction to be half completed is called half-life time of the reaction.

✓It denoted by $t_{1/2}$

First order rate constant reaction

 $K_1 = 1/t \ln a/a - x$ ------ 1

Let as consider at initial concentration the reactant will be a.

After the time taken t will be $t_{1/2}$ and x will be a/2Substitute the value in equation 1

The equation 1 will be

 $K1 = 1/t_{1/2} \ln a/a - a/2$ -----2

K1= 1/ $t_{1/2}$ ln 2 ------3

Where $\ln 2 = 0.693$

So that the equation will be

 $K1 = 0.693/t_{1/2}$ -----4

This equation 4 is the half life period for the 1st order

reaction

Zero order reaction

- The reaction rate is not affected by changes in the concentration of one or more reactants
- It is called zero order reaction
- In such reaction, the rate may be determined by some other limiting factor
- Such as amount of catalyst used in catalytic reaction or
 - the intensity of light absorbed in photochemical reaction

Consider the simplest equation

rate expressed as

$$r = -d[A]/dt = k_0 -----2$$

Rearranging the equation 2

$$-d[A] = k_0 dt$$
 -----3

Where k_0 is the zero order rate constant

Let as consider at initial t=0 so that reactant is $[A_0]$

After time taken t=t and so that reactant is [A]

Integrate the equation

$$\int_{[A_o]}^{[A]} d[A] = k0 \int_{t=0}^{t=t} dt \quad -----4$$

- [A] + [A_0] = k_0t
$$k_0 t = [A_0] - [A]$$
$$k_0 = 1/t [A_0] - [A] \quad -----5$$

This is the integrated rate equation for a zero order reaction

