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A Study on Complexity Measure
of Diamond Tile Self-assembly System
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Abstract. Molecular self-assembly gives rise to a great diversity of com-
plex forms from crystals and DN A helices to microtubules and holoen-
zymes. We study a formal self-assembly model called the Diamond Tile

Assembly System in which a diamond tile may be added to the growing
h with its neighbours exceeds a

object when the total interaction strengt

parameter 7. Self-assembled objects can also be studied from the point of

view of computational complexity. Here, we define the program-size com-
umber of distinct tiles

plexity ofan N x N diamond to be the minimum n
required to self-assemble the diamond. We study this complexity under

the Diamond Tile Assembly Model and find & dramatic decrease in com-
plexity from N? tiles to O(logN) tiles, as T is increased from 1 where
bonding is non co-operative to 2 allowing co-operative bonding. Further,
we observe that the size of the largest diamond uniquely produced by a

set of n tiles grows faster than any computable function.

Keywords: Self-assembly + Diamond Tile Assembly
Program-size complexity

1 Introduction

Self-assembly is the process by which a collection of relatively simple compo-
nents, beginning in a disorganized state, spontaneously and without external
guidance coalesce to form more complex structures. The process is guided by
only local interactions between the components, which typically follow a basic _
set of rules. Despite the seemingly simplistic nature of self-assembly, its power f
can be harnéssed to form structures of incredible complexity and intricacy. In |
order to model such systems, theoretical models have been developed and one of -
the most popular among these is the Tile Assembly Model introduced by Erik |
Winfree in his Ph.D. thesis [Wi2]. The complexity of self-assembled shapes is
investigated in [LL1,SE1,Sul].

Branched DN A molecules [Sel] provide a direct physical motivation for the
Tile Assembly Model. DN A double-crossover molecules, each bearing four sticky
ends analogous to the four sides of a Wang tile, have been designed to self-
assemble into a periodic two dimensional lattice [WL1]. The binding interactions
between double-crossover molecules may be redesigned by changing the base

@© Springer Nature Singapore Pte Ltd. 2018
D. Ghosh et al. (Eds.): ICMC 2018, CCIS 834, pp. 194-204, 2018.
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X . : lecular Wang tiles.
soquence of their sticky ends, thus allowing arbitrary sets of mothe =) mbly

N i h a system,
From a physically-based stochastic model Ott SU_C . omer
Model is obtained in the limit of strong binding domains and low o

concontrations [Ral, Wil]. This model is an extension of the th:ﬁry (;f X:I:)gf
tiles [Wall to include a specific mechanism for growth based on the phys

molecular self-assembly.
A program consists of a finite se

aolecular binding domain and thus each sid A e
which in our model must be an integer. Starting from a chosen seed tile, gro

sccurs by addition of single tiles. Tiles bind a growing assembly only if their
hinding interactions are of sufficient strength as determined by the temper ature
parameter 7. T measures the co-operativity of the binding interactions. It_ 18
interesting to observe that cooperative effects play a major role in gene regulation
and many other biological systems.

In this paper, we introduce a new mo

¢ of unit diamond tiles with sides having
o has an associated binding strength,

del called Diamond Tile Self-assembly

System. It is a formal model for the self-assembly of molecules, such as protein
or DNA, constrained to self-assembly on a diamond lattice. We measure the
complexity of self-assembly by considering diamond instead of square [RE1}.
Standard complexity measures in computer science are based on time, space,
program size and decidability. Here, we discuss the program-size complexity
of self-assembled diamonds, where complexity is measured by the number of
distinct tile types involved.

2 Diamond Tile Self-assembly System

In this section, we introduce a new model called Diamond Tile Self-assembly

System.
Definition 1. A Diamond Tile Self-assembly System Drag is defined by
the quadruple

T=<T,8S5497T>

where T is a finite set of diamond tile types containing empty, S is a seed assem-
bly with finite domain, g 13 @ strength function and T > 0 is the temperature.
We consider only |S| =1, where S = A§°’°). ‘

Diamond tile self-assembly is defined by a relation between configurations:
A -1 B if there ezists a diamond tile t € T and a site (z,y) such that B =
A+ A™Y and B is T-stable. In particular, at T =1, a diamond tile may be
added if it makes any bond to a neighbour, whereas at 7 = 2, the diamond tile
to be added must either make two weak bonds or a single strong bond. —7 is the
reflexive and transitive closure of —1. The diamond tile self-assembly system
defines a partially ordered set, the produced assemblies Dprod(r) where

Dp,.od('[) = {A, 35 € Ts.t. S -—-b-';- A} and A < B‘lffA —*-;- B.

Another set, the terminal assemblies Dyerm(t) is defined as the mazimal
elements Of DProd(T) N
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DT'rm(T) = {A € Dpyrod(r), 3B s.t. A < B}.

The produced assemblies include intermediate products of the self-assembiy
Process, whereas the terminal assemblies are Just the end products and may be
consdered as the output. If

A € Dprog(r) = 3B € Drepm(r) 8t.- A =1 B

then T is said to be haltable, in the sense that every path of self-assembly can
eventually terminate. If T is haltable and Drerm(r) 18 finite, T is said to be
halting in the sense that every path of self-assembly does eventually terminate.
In general, {f Dpyoaqr) 15 a lattice, we say that T produces a unique pattern-T
need not be halting nor even haltable.

Ewample 1. Consider the Diamond Tile Self-assembly System T = <T, 8,9, T >
where

VAR ARG RR

g = Strength Function ,T= 2,

The tile set T', consists of four diamond rule tiles with strength-1 binding
domains, two border diamond tiles with strength-1 and 2 binding domains and
one seed diamond tile with strength-2 binding domains. At 7 = 2, these tiles
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Fig. 1. Simulating a binary counter with diamond self-assembly
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A Study on Complexity Measure of Diamond Tile Self-assembly System a1
count in binary; the n** row above the origin represents the integer n (which

is rotated 45° anticlockwise). This self-assembly program is analogous to an

infinite loop-there are no terminal assemblies. Diamond rule tiles may be added

only if both their southwest and southeast neighbors are already in place and

there is a unique diamond rule tile for each possible pair of binding domains
the neighbors could present; furthermore, the property that only northwest and
northeast sides exposed in the assembly is preserved from step to step. The
computation is possible when the system temperature = 2 and at least two
strength —1 bonds must cooperate for a tile to be added to an assembly. The
assembly is not terminal and arrows indicate positions at which may grow. The
picture pattern generated by Dy As is shown in Fig, 1.

3 Complexity of Diamond Self-assembly

In this 'section, we introduce Complexity of Diamond Self-Assembly. We will be
measuring program-size complexity using asymptotic notion.

All functions will be from N — N. A function f
f(n) < f(n+1). A function f(n) is un bounded iff V¢, In s.t. f(n) > c. We say
f(n) = O(g(n)) iff 3 ¢, mg .. ¥ n > mo, £(n) < co(n). We say f(n) = 2(g(n)) iff
3¢, nost.Vn>ng, f(n) > cg(n). We assert proposition P(n) infinitely often
if Vno>0,3n>ngst. P(n). Define O; ,. (big-O infinitely often) such that
f(n)= 0i.,.(9(n)) iff I csit. f(n) < ¢g(n) infinitely often. We assert proposition
P(n) for almost all n iff liMpy oo LSRSM00EP(M)| _ o Define £2,, (big-2

:ulmost always) such that f(n) = 2a.0(g(n)) i3 cs.t. f(n) > cg(n) for almost
n. .

We can now formally describe the program-size complexity of an N x N
diamond. An assembly A isan N x N diamond if there exists a site (Z0, yo)

such that (z,y) € Aiff z > zpand z < 2o + N and y > yp and y < yo + N.
In other words the choice of tiles may be arbitrary, so long as they are there.
Diamond 4 is a full diamond if for all (z, y) and (z',y") € A such that (z,7) and
(z/,y’) are neighbours (z,y) and (z',') bind with non-zero strength. In other
words, every adjacent pair of tiles must have non-zero interaction strength. We

are interested in which diamonds can be self-assembled by tile systems:

DT = {(N,n) € N x N s4. there exists a tile system
T=<TS¢,7T>|T|=n+1and T
uniquely produces an N x N full diamond}.

(n)is non-decreasiné iff vV n,y)

wal
he
of
er
%
ut

o

We define the program size complexity K7, ,(N) of a diamond to be the minimum
number of distinct non-empty tiles required to uniquely produce the diamond-

physically the number of distinct types of molecules that must be prepared.
KT 4(N) = min{ns.t.(N,n) € D7}

Our investigations rely on several constructions. We need an easy way to verify
that these constructions do indeed uniquely produce the target structure. For
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oW an assembly may have more than one diagona]
Mly, the Property that is preserved from Step to step is that
StOP--!!gn-ahaped: the orientations of the exposed sides along the
Meter are of the form

NE‘{NE, SE)* Sk

front. Specificall
the Assembly jg :

(clockwige) peri

{SE, sWy sw*(sw. NW}*NW*{NW,NE)*.

S rely on showing that there is exactly one strength-2 b
Jolning each row ang each column, ’ " o

We begin by Studying KT, (N) for T

=1 and obtain the following theorem.
Theorem 1, Kba(N) = N2,

a)

Fig. 2. Formation of diamonds at 7 = 1.

To show K}, o (N) > N2, suppose o diamond tile set T with |T| < N? proguces

an N x N full diamond A (Fig.8). In Fig. 8, 4 FdlN x N diamond with fewer
than N? diamond tiles must have some tile i present at two sites. Consider the
assembly W (the white diamond tiles) which includes an assembly V' (bounded
diamond tile i), the seed tile S and q tile that connects the seed tile to V. W can
be extended indefinitely with the addition of translated segments of V (e.g. V2
shoun in gray). Then some tile i i3 present at two sites in A, say (z1,y)) and
22’1/2) ’

( Let V' be the V-shaped (or possibly linear) assembly consisting-only of the
tiles at (z1,1),..., (23, y2); let V! be the assembly such that V! + (z,,y5) = V;
let V be the assembly such that V2 + (ZLy) =V let VE = [VE(z +nx (zg -

F
-
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: System with fewer than N? diamond tiles can uniquely produce
an N x N diamond.

)\ y+ns (ve —v1)) be a translated version of V¥ for k =1,2 and let W consist
of Y,S and' the fewest diamond tiles in A required to connect S to V. Because
W '8 contained in A and A is q full diamond, all adjacent pairs of diamond tiles
mtfm"'tl‘m @ strength-(at least)-1 side and therefore S —3 W. At least one of
V2, Vi V2, +1} say V7, can be added to W, resulting in a larger assembly
also produced by T. This can be continued indefinitely: if s = +1 then for all
nWHIL LV isin Dproary; if s = —1 then for alln, W+ £ Vr isin
Dp,.od('r). This contradicts the assumption that T is halting and terminates in
N x N full diamonds.

At T =2 the situation is markedly different.

Theorem 2. K3, ,(N) = O(N).

Proof. Figure4 shows two constructions for an N x N full diamond using
2N (Fig. 4a) and N + 4 (Fig. 4b) diamond tiles respectively. Diamond tile self-
assembly from the seed diamond tile A expands initially by single strength-2 inter-
actions creating the northeast and northwest borders with the alphabetic diamond
tiles. As the border grows, two cooperative strength-1 interactions allow the blank
tile to fill in and complete the diamond.

In Fig. 4b, diamond tile self-assembly from the seed diamond tile A ezpands
initially by single strength-2 interactions creating the northeast border with the
numbered diamond tiles. The U and V diamond tiles proceeds in the diagonal
sides from west to east by their strength-2 interactions. Thus allowing the rest of
the column to be filled with blanks. The N x N full diamond can be easily verified
to be a terminal assembly. .

This is only the beginning. The construction in Fig. 4b can be combined with
o fized-width version of the binary counter of Fig. I to obtain a set of tiles that
produce the full diamond by counting in binary instead of by counting in unary.

=]
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Fig. 4. Formation of full diamonds at 7 = 2.

Theorem 8. K2, ,(N) = O(logh).

Proof. Figure 5 constructs an N x N full diamond using n+ 22 diamond tiles,
where n = [logN]. n+ 2 diamond tiles, including the diamond seed tile, produce
an (n—1) x (n - 1) diamond as in the previous construct (Fig. 4b). Here N =
52,1 = 6 and 28 tiles are used. Additionally, the n— 1 diamond tiles in the seed
row have northwest sides encoding the bits of the integer ¢ = 1+ 271 — (N -
n)/2, the initial value of the counter. We must use a fized-width version of the
counter diamond tiles of Fig. 1; this requires a special set of diamond tiles for the
southwest and southeast columns of bits. The counter counts from c to on—1 using
two rows for each integer. In order to detect when the counter has finished, we
use alternating rows to increment the counter from southeast to northwest then
to copy of the bits from northwest to southeast unless the northwest bit just
rolled over to northeast from 1 to 0. In the latter case, the diamond tile presents
a strength-2 side with a label not found on any other diamond tiles, thus halting
the counter. (The strength-2 side will be used in our next construction; here,
any strength would suffice). There is a special diamond tile for the rightmost
bit in the first increment row right the seed row. This diamond tile contains
a strength-2 side to initiate the u — v diagonal, thus filling in the rest of the
diamond. Overall, the counter requires 17 tiles; the seed row requires n — 1 tiles;
the two diagonals require 4 tiles and there are two blank tiles.

We can do much better: by recursively itsmtz’ng the above construction one

o2

can produce N x N diamonds with N > == 3¢/ 2 x x n. Define log*N as the

least n such that2 x x n > N.
Theorem 4. K% ,(N) = 0;,.(log*N).

?roof. Our proof is by induction. Let S™ refer to a diamond tile system contain-
ing fewer than 22n diamond tiles (including the u,v and blank diamond tiles)
that uniquely produces an N x N full diamond such that

e N>2#+n, 4
e All binding domains on the northwest and northwest bottom are strength I

or 0.
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Fig. 5. Formation of an N x N diamond using O(logN) tiles.

o All binding domains on the southwest have the strength-1 blank label.

o The binding domains on the northwest upper side conform to the pattern
TYy*2b%a where T is a strength-2 binding domain that occurs nowhere else and
¥,2,b and a are distinct strength-1 binding domains.

We show that S™ erists for all n. The base case n = 1 is trivial. The inductive
step is illustrated in Fig. 6. (In Fig. 6, given a set of tiles S™*! that produce an
N x N full diamond that satisfies recurrence, the addition of 22 new tiles results
in S**! and produces a (N +2 x 2V) x (N +2 x 2N) full diamond. New side
labels (with doubled symbols) prevent counter tiles from S™ from incorporating in
__ the S"*! counter). First, there are 5 diamond tiles that, initiated by z, produce
~.an initial string of 0's for a new fized-width counter and provide a strength-2

‘#ide for a new u — v diagonal. Then there are 16 diamond tiles equivalent to the
_Lounter. diamond tile in Theorem 3 but using new side labels; the counter counts
‘%'J?"" - The diagonal fills in the rest of the diamond, now with sides of length
N+2’#x VSN S 2us (n+1). Therefore S™ exist for all n and for those n,

-
22log*N > 22n > D% ,(N).

& lag* N is an ezxceedingly slowly growing function; the above construction shows
:*, - thet, ery laryg diamonds can be assembled with a very small number of dia-
| opd tiles, Dut we can.do.much better yet! By embedding the simulation of
ring Machine in.the.growth of a diamond we show that:

5. K}iA(N ) = O40.(f(N)) for f(N) any non-decreasing unbounded
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Fig. 6. Formation of an N x N diamond using Oi.0.(log*N)

Proof. Our proof relies on a self-assembly version of the Busy Beaver problem

[Ral). Define:
BE  (n) = maz{Ns.t.N,n) € DT},
To prove Theorem 5, we first show

B ,(n) = 2(F(n)) for any computable function F(n). (1)

Theorem 5 follows from (1 ) by contradiction: if false, then there ezists a com-
putable, non-decreasing, unbounded function f(N) such that 3 No s.t. VN > N,,
K% A(N) > £(N).

Let F(n) = maz {N st N = 0 or f(N) < n}; this is a computational
function. Note that B? ,(n) > F(n) requires that 3 (N, n) € D? s.t. N > F(n)
and therefore f(N) > n and K2 ,(N) < n. For N > Ny this contradicts K3, ,(N)
2 J(N). Therefore, for all n > f(Ny), B} 4(n) < F(n), contradicting (1) and
establishing Theorem 5.

Recall that By(m) = Q(F' (m)) for any computable function F'(m) where:

By(m) = maz{t s.t. m = gs and there exists a g-state, s-symbol
Turing machine that halts on a blank tape in t steps}

Let M be a g-state, s-symbol Turing machine that halts on a blank tape in B,(m)
steps, where m = gs. We will construct q diamond of size N = 2B,(m) + 3
using n = 1295 + 4s + 9 diamond tiles by simulating M with tiles, similar to
the construction of Robinson [Rol]. Given any n > 41, we will use s, = 2,
o = [ 2517 ] and my, = gnsn; our construction will need only 12¢,8, +4s, +9 <
n diamond tiles. Then Bf, ,(n) > 2B, (mn)+3 = 2(F'(my,)). For any computable

[P —
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' le function F'(m) s.t. ¥V n, F'(m,) >
function F(n), we can find another oomputab n £
F(n). Therefore, we arrive at (1). In Fig. 7, The Busy Beaver machine mulau
here has three states (go = A, 1 =B,q2=C)and‘tw<_)symboL9(so=0.s; =1)
Note that R denotes right, L denotes left and 4z indicates that four varations

of a tile are used, one for each compass direction.

{ T thrve stabe Busy Beaver machine

| N —BR A—CL

|
B — AL B —BR
N~ Bl O —ehak i&; % \‘\
8¢ 8 —=q's'imakeeadtle ¥/ U ndmnle‘(?

for gs --q‘:'n-n-um;@ j%, a0d write e Fp,
Y

A P W
D $ 45 ¢
——_—Y X 2

e 22222
4

4% symbol tiles &.'l

Seed and mital e @ @’@' @@

CRCTOTN

Fig. 7. Formation of an N x N diamond
given Turing machine.

We construct the diamond by growing four identical simulations of the Turing
machine M, one from each side of a seed tile. Each simulation stays within one
of the four regions bounded by the diagonals of the diamond; when M halts,
the diamond is complete. We require 4 diamond tiles to create the four half-
diagonals defining these boundaries between simulations. For each simulation
we require 1 initial state that matches the seed diamond tile, s symbol diamond

stmulation to the northeast of the diamond seed tile. Recall that a diamond tile is to
6 {-tuple (onw,oNE, 05E, Osw) representing the northwest, northeast, southeast

and southwest binding domains. Binding domain strengths are 1 unless noted

Each of the four simulations has its own version of the side labels described,
distinguished by superscripts (we omit the superscript N from the description of
northwest facing simulation below).

The symbol diamond tile for symbol s is (04,0¢,04,0.) where o, is a binding -
domain representing the symbol s and Oe 15 a binding domain indicating that the i
TM head is not present. For each state-symbol pair (q, s) the left read diamond
tsle (aq.na'nanﬂq) and the right read tile (0g.5109,05,0¢) represent the TM
head in state g entering a tape cell (from the left or from the right) and read-
ing the symbol 5. The binding domain Oq.s have strength 2; this is necessary for
the TM head to enter the nezt row of the simulation. The write diamond tiles, o
representing the action the TM head takes depend on the form of the state tran-
sition table entry. For each entry of the form (q,s) — (¢', ¢, L) there is a write

ey !
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aamond le (0,1,0¢, 4.,y for each entry of the form (4, 5) — (¢' &' R) then
18 @ write diamond tile (05,04/,04.4,0e); for each entry of the form (g, s) — hait
there is a write diamond tile (ohau, Oe,0g,5,0¢).

. _To start the Turing Machine in state qo reading the blank symbol sq, the
watial tile for the northeast simulation is NE = (940,50: 0e; 05,0c) where os is a
strength-2 binding domain. The initial diamond tiles for all four simulations bind

to the diamond seed tile S = (@§%,0NE,65E, 6SW). The four diagonal diamond

tif'es. N; (Géf,,gi",oi",a,”f,’), E = (Ufg,a,o,af,af), S =(af,a£,ai,af) and
W =(a), Oc105,) T l’,‘,’ ) pad the tapes with extra cells containing the blank symbol

So and delimit the four simulations.

4 Conclusion

This paper discussed the program-size complexity of self-assembled diamonds,
where complexity is measured by the number of distinct diamond tile types
involved. An alternative complexity measure is the minimum number of distinct
side labels required uniquely to produce the object. The number of labels will be
relevant in a physical system where the number of distinct binding interactions
are limited due to imperfect specificity of binding. A main conclusion of this
paper is that the program-size complexity of self-assembled objects (at 7 =2)
looks remarkably similar to the usual program-size complexity with respect to
Turing Machines.

References

(LL1] Lathrop, J.I., Lutz, J.H., Patitz, M.J., Summers, S.M.: Computability and
complexity in self-assembly. Theory Comput. Syst. 48(3), 617-647 (2011)
(Ral] Rado, T.: On non-computable functions. Bell Syst. Tech. J. 41(3), 877-884
(1962)
[RE1] Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-
assembled squares (extended abstract), Oregon, USA, pp. 1-37 (2000)
[Rol] Robinson, R.M.: Undecidability and non periodicity of tilings of the plane.
[nventions Math. 12, 177-209 (1971)
[Sel] Seeman, N.C.: DNA nanotechnology: novel DNA constructions. Annu. Rev.
Biophys. Biomol. Struct. 27, 225-248 (1998)
[BE1] Boloveichik, D., Winfree, E.: Complexity of self-assembled shapes. SIAM J.
Comput. 36(6), 15644-1569 (2007)
{Sul] Summers, 8.M.: Reducing tile complexity for the self-assembly of scaled
:hupa; through temperature programming. Algorithmica 63(1-2), 117-136
2012
{Wal] Wang, H.: Proving theorems by pattern recognition, II. Bell Syst. Tech. J.
40, 1-42 (1961)
{Wil] Wiafree, E.: Simulations of computing by self-assembly. In: Proceedings of
the Fourth DIMACS Meeting on DNA Based Computers, pp. 1-27 (1998)
(Wi2] Winfres, E.: Algorithmic self-assembly of DNA. Ph.D. thesis, California Insti-
[WL1J Winfres T?nﬂbgi‘ "o zlor, 1 A
o & LU, 1, Wenzler, LA ., Seeman, N.C.: Desi and self-assembly
of two-dimensional DNA Crystals. Nature 394, 539—544?1998)

Scanned by CamScanner



